NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

VISUALIZATION OF IMPROVED
TARGET ACQUISITION ALGORITHM
FOR JANUS (A)

by

Mark R. Whitney
December 1994

| Thesis Advisor: Morris R. Driels

Approved for public release; distribution is unlimited.

DIFIC QUALITY INGPECTED 8

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1994 Master’s Thesis

4. TITLE AND SUBTITLE VISUALIZATION OF IMPROVED TARGET |[5. FUNDING NUMBERS
ACQUISITION ALGORITHM FOR JANUS (A)

AUTHOR(S) Mark R. Whitney

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

This thesis successfully demonstrates the ability to apply realistic visualization to a training application with
a commercially available software program. It is increasingly important with the trend of decreasing
military spending to maintain force readiness through quality training. Utilization of realistic visualization
in simulations of realtime scenarios is essential to achieving this quality training. This thesis utilizes the
Improved Target Acquisition Algorithm for Janus (A) in the visualization of sensor to moving target lines
of sight. This visualization takes place in an obstruction constrained terrain using a representation of the
higher resolution one meter style Pegasus database numbers.

14. SUBJECT TERMS Pegasus, Janus (A), WTK, and Line Of Sight. 15. NUMBER OF
PAGES 171

16. PRICE CODE

17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500) Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

Approved for public release; distribution is unlimited.

VISUALIZATION OF IMPROVED
TARGET ACQUISITION ALGORITHM
FOR JANUS (A)

by
Mark R. Whitney
Lieutenant Commander, United States Navy

B.S., Maine Maritime Academy, 1984

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1994

Wl B Tt

Author:

Mark R. itney

Approved by:

Morris R. Driels, Thesis Advisor

Wmﬁr&m/

Matthew D. Kelleher Chairman
Department of Mechanical Engineerin

iii

Agsesssion For

HTIS GRARK
DTIC TaAB

Unannounned
Just il 181 I 0B

BLatributiony

ﬁ’mﬁ LeDARILY (\%}3@

\“e i m*& Fog ‘
b+ 1 813 S@a@ L8 ;?ii

ABSTRACT

This thesis successfully demonstrates the ability to apply realistic visualization
to a training application with a commercially available software program. It is
increasingly important with the trend of decreasing military spending to maintain
force readiness through quality training. Ultilization of realistic visualization in
simulations of realtime scenarios is essential to achieving this quality training. This
thesis utilizes the Improved Target Acquisition Algorithm for Janus (A) in the
visualization of sensor to moving target lines of sight. This visualization takes
place in an obstruction constrained terrain using a representation of the higher

resolution one meter style Pegasus database numbers.

vi

I. BACKGROUND e e 1
A. INTRODUCTION it e et e e 1
B. JANUS .. e 1

1. Background i 1
2. AreasofInterest i .. 2
a. Target Acquisition 2

(1) Background 2

(2) Signature Attenuation 3

(3) ResolvableCycles 3

(4) Acquisition 4

b. Lineof Sight ‘5

3. Limitationst 6
a. Terrain Representation 6

b. Target Representation 7

C. PEGASUS DATABASE. i 7
1. Background 7
2. Thirty-two Bit Number Representation 8
3. Grid Reference Position 9
D. IMPROVED TARGET ACQUISITION ALGORITHM 11
1. Objectivet e e 11
2. Accomplishmentsot 11
a. Target Representation 11

b. Obstruction Rep;'esentation 12

¢. Determination of Number of Possible Line’s of Sight ... 12

d. Steppingof Lineof Sight 14

TABLE OF CONTENTS

1. Conversion 15

2. WorldToolKit 15

3. Simulation 15

II. CONVERSION OF CODE AND DATA 17
A. OBIECTIVE i, 17
B. CODE CONVERSION 17
1. CProgramming Basics 17

a. Preprocessor Directives 18

b. Functions 18

C. Variablesand Constants 19

d. Pointers 19

2. FORTRAN to C Conversion Procedure 20

a. FORTRAN Code Description 20

b. Conversion 21

c. CCode Description 21

C. DATACONVERSION i, 22
1. 32 Bit Number Conversion 22

2. TerrainModeling 23

3. Program CONVERT.C Description 23

III. WORLDTOOLKITttt 25
A. OBJECTIVE S 25
B. WORLDTOOLKIT PROGRAMMING BASICS 25
Lo Overview 25

2. Universe Classo i, 25

3. Graphical Object Class 26

4. Terrain Objectso .. 27

S. TeXtUresot 27

6. Light Objectsttt 27

7. Sensor Classvtiiit it e e e 27

8. Viewpointsttt 28

9. Path Classc.iiiiiie e 28

10, Window Classttt 28

IV. SIMULATIONS USING WORLDTOOLKIT 29
A. OBJIECTIVE i i et ea e 29

B. TEST BATTLEFIELD CREATION 29

1. TestBattlefields, 29

a. CCode Test Battlefield 29

b. WTK Battlefield Terrain 31

2. Battlefield Targets, 31

C. SIMULATION PROGRAMS DESCRIPTION 32

1. OVerviewottt e e e e 32

2. Program PROGI1.C 33

3. Program PROG2.C 35

4. Program PROG3.C 36

D. TERRAIN VARIATIONS it 37

1. Existing Ground Elevation Representation 37

2. U.S. Geological Survey Terrain 37

V. DISCUSSIONccuvinn.n R 41
VI. CONCLUSIONS AND RECOMMENDATIONS 43
A. CONCLUSIONSttt e e 43

B. RECOMMENDATIONS ittt e e 43

APPENDIX A. FLOWCHART ONEMETERF 45

APPENDIX B. FLOWCHART CCODEcoovuu i, 47
APPENDIX C. FLOWCHART CONVERT.C 49
APPENDIX D. FLOWCHART BTLFLD TERR.C 51
APPENDIX E. FLOWCHART PATH.C 55
APPENDIX F. FLOWCHART PROGI.C 57
APPENDIX G. PROGRAM PROGI.C, 59
APPENDIX H. FLOWCHART PROG2.C 89
APPENDIX I. PROGRAM PROG2.C, 91
APPENDIX J. FLOWCHART PROG3.Cc.0ouooo . 121
APPENDIX K. PROGRAMPROG3.C, 123
LISTOFREFERENCES 153
INITIAL DISTRIBUTION LIST0 i 155

LIST OF FIGURES

Figure 1: Terrain Representation 7
Figure 2: Pegasus Database Elements 8
Figure 3: Visualization of Pegasus Database Elements 9
Figure 4: Sample Grid oL, 10
Figure 5: Target Model 12
Figure 6: Obstruction Modelst 13
Figure 7: Stepping of Lineof Sight 14
Figure 8: Basic CProgramt 17
Figure 9: Basic CFunction 18
Figure 10: Pointer Use Example e 20
Figure 11: WTK Simula_tion LOOp .o iii i 26
Figure 12: Test Battlefield L. 30
Figure 13: Tank Target 31

...................................

........................

xii

ACKNOWLEDGEMENT

The author would like to acknowledge the financial support of TRADOC Analysis
Command (TRAC) Monterey (Contract No. RCXLD and RCX4D) for the work reported
in this thesis.

xiii

xiv

I. BACKGROUND

A. INTRODUCTION

Operating at sea, out in the field, or in the air is how military personnel receive
a majority of their training in order to become proficient at their jobs. By practicing with
actual equipment and situations, personnel are able to absorb critical information in order
to make intelligent informed decisions. With decreasing military budgets, operational
training has had to be severely curtailed due to lack of funds. To maintain operational
readiness, today’s military has to rely heavily on "schoolhouse" training instead of
"operational” training. There has to be a way to train in a schoolhouse environment and
yet achieve an operational environment as close to actually being out there in order to
maintain proficiency in critical skills.

This is where simulation becomes an integral part of training. In order for
simulation to achieve its goal of realistic training, it must be sensed as real. Visualization
gives simulation this sense. In a simulation, it is critical to be able to see what looks like
a ship, tank, or plane moving across a real terrain in real time, instead of an object
moving across a two dimensional contour plane.

Having the capability to train with realistic visualization and do it cost efficiently
is a top priority. Cost effectiveness is based in part on the ability to not have to reinvent
the wheel for every different type of simulation. If software packages available
commercially can be adapted into existing simulation programs, with minimal
programming, cost effectiveness would be achieved. This is the major thrust of this

thesis.
B. JANUS

1. Background

Janus Army or Janus (A) is a computer based, interactive, two-sided, closed,
stochastic, ground combat simulation. Janus simulates two opposing forces in battle.

Typically the largest force used is a brigade due to effects on the simulation and ability

of force players to command their subordinate forces. These forces are controlled by two
or more users operating from individual computer terminals. Each terminal is a graphical
depiction of friendly forces, detected enemy forces, terrain contours, and a variety of other
useful information. Within Janus, there are thirteen executable FORTRAN programs.
These programs are divided into three major groups: database creation and management;

scenario creation, verification, and operation; scenario analysis. [Ref. 1: pp. 1-5]

2. Areas of Interest
In order to understand the basics of the improved target acquisition algorithm, it
is first necessary to comprehend two major concepts of Janus. First, how targets are
acquired. Second, how a Line Of Sight (LOS) is determined.
a. Target Acquisition
The following is the summarization of A.D. Kellner’s 14 July, 1992
memorandum for the record on target acquisition in Janus presented 1n Lieutenant

Frederick W. Dau’s thesis [Ref. 2: pp. 3-7].

(1) Background. Acquisition in the Janus model is based on the
mathematical detection model developed by the Night Vision and Electro-Optics
Laboratory (NVEOL). This model is based on a concept involving the computatidn, for
a specific sensor-target pair, of the number of resolved cycles across a target’s critical
dimension.

Imagine a pattern of stripes or bars equal in length and alternating
in color at the targets location. Let the contrast between the colors of the pattern be the
same as the contrast between the image of the target and it’s background. The length of
the pattern is the same as the target’s minimum presented dimension. Slowly decrease
the width of the strips until the minimum width at which the observer can still distinguish
the individual stripes is reached. The number of pairs now contained in the minimum
presented area is called the number of resolved cycles for that target-sensor combination.

The concept of resolvable cycles is very useful in the computation
of detection probabilities. The NVEOL model defines two probabilities associated with
the detection of a given target by a given sensor. First, the Probability of Detection (PD)

is that the target will be detected by the sensor given infinite time. This quantity is also
known as p-infinity. Second, is the probability that the target will be detected during the
time it is within the sensors’s field of view, given that it can eventually be detected. This
is called P(t). Both quantities of PD and P(t) are functions of the number of resolvable
cycles, N, which can be resolved by a given sensor-target pair. The probability that a
sensor can discriminate the target once detected is also a function of N.

The portion of the NVEOL model relevant to Janus consist of the
following three steps: 1) calculate the attenuation of the target’s signature along the LOS
2) given the target’s signature at the sensor, calculate the number of cycles the sensor can
resolve across the target’s critical dimension 3) given N, determine if the target can be
detected, acquired, and recognized.

(2) Signature Attenuation. Signature attenuation between the target
and the sensor is caused by atmospheric effects as well as objects obscuﬁﬁé the path of
the LOS which will be called large area smoke. Let:

St = signature at target

Ss = signature at sensor

T1 = transmission of normal atmosphere
T2 = transmission of large area smoke

and

Ss =St *x Tl = T2)]

For optical sensors, St is the optical contrast of the target which is a part of the master

database, and thus remains the same for a target during a Janus run.

(3) Resolvable Cycles. The performance of a sensor is represented
by a curve of resolvable Cycles Per Milliradian (CMR) as a function of the target

signature measured at the sensor. This can be expressed mathematically as follows:

CMR = f(Ss) @

However there is no analytical equation to describe this function,
so this function is input in the master database for each sensor as a table of values.
Entering the table of the specific sensor-target pair with the signature at the sensor, Ss,
produces an output of CMR. Once the number of resolvable cycles is obtained the
number of cycles actually resolved by the sensor is obtained by:

TDIM 3)
Range

N = CMR +«

where
TDIM = target’s minimum presented dimension in meters
Range = sensor to target range in kilometers
TDIM is obtained from the master database for the particular target and range is provided

by the simulation.

(4) Acquisition. After the number of cycles resolved on the target
is known the probability of detection and time till detection, P(t), may be determined.

The probability of detection given by:

CRV @

PD = — —*
1+CRVY

where

W=27 + 0.7R

CR = N/N50

N = number of resolvable cycles)

N50 = median number of resolvable cycles required for eventual detection
Note that when N = N50 the equation 4 goes to 0.5, meaning that for a random sample
of observers, half will require less than N50 resolvable cycles to detect the target and half
will require more. Janus uses the following N50 criteria for detection and subsequent

target discrimination:

1.0 cycles Detection: sensing a foreigh object is present
2.0 cycles Aimpoint: ability to aim at a target
3.5 cycles Recognition: ability to distinguish target class, such as tank, truck, jeep
6.4 cycles Identification: ability to classify target as specific member of a class
At the beginning of a Janus run each sensor-target pair is assigned
a random value which represents the ability of the sensor to detect the corresponding
target. This random number is the number of resolved cycles required to detect and is
called the detection threshold. When N is greater than or equal to the detection threshold
it is said that the p-infinity test has been passed and that the target may eventually be
detected by that particular sensor. Once the p-infinity test is passed a value for P(t) is
determined using the values of CR and PD. This value is compared to another randomly
drawn number, and if it exceeds this random number then detection or another level of
discrimination is achieved.
b. Line of Sight
Within the DOLOS subroutine, target acquisition cannot occur if targets are
sufficiently concealed behind terrain features. It is therefore important to verify that a
LOS between the sensor and target exists before considering target acquisition. Within
Janus, the subroutine DOLOS is called to determine Probability of Line Of Sight (PLOS).
Initially DOLOS retrieves sensor and target grid locations and elevations and determines
a Temporary Probability of Line Of Sight (TPLOS). [Ref. 3: p. 413]
Within the Janus terrain database, each grid is assigned a density value.
Assignment of a density value to a grid is determined by surveying the number and height
of vegetation for each grid. Once a density value is signed, the entire grid will have the
same height and PLOS. [Ref. 2: p. 8])
The slope of a line between sensor and target is now determined based on
x and y coordinates of each. Depending on slope, DOLOS incrementally steps one grid
at a time starting from sensor and goes toward target. Vertical slope is also calculated.
At each step, height changes are added to sensor height. In each grid along the path of
the LOS, HITREE retrieves grid tree height and density values. Tree height is added to

a grid’s ground elevation and compared to LOS elevation in grid. Termination would
occur if LOS height is less than grids base elevation. Continuation of LOS would occur
if LOS height is greater than the grids base elevation, and procedure is repeated. If LOS
height falls somewhere in between grid elevation and total elevation including obstacles,
TPLOS is multiplied by the probability of LOS retrieved by HITREE. This repetitive
procedure is continued until target grid is reached or TPLOS falls below 0.01. This is an
indication that the LOS has been completely attenuated by the terrain features along the
path and no longer exists. When DOLOS completes its run, it passes final value of

TPLOS back to calling routine as PLOS. [Ref. 2: pp. 9-10]
3. Limitations

a. Terrain Representation

Within the Janus database, the low resolution of terrain and objects on it
are considered a limitation to the realism of the simulation. For the purpose of this thesis
only terrain, trees, and buildings will be discussed.

The terrain used in Janus is a digitized representation based on Defense
Mapping Agency data. As shown in Figure 1 [Ref. 4: p. 6], the graphical representation
details contour lines, roads, rivers, vegetation, and other obstructions [Ref 5: p. 3].

The horizontal resolution is one hundred meters and vertical resolution is
ten meters. There are several different sizes of exercise areas to choose from at the
beginning of a simulation. The area chosen is subdivided into grid cells. These grid cells
are represented as a flat plate with constant elevation, with constant terrain type. In order
to go between adjacent cells of different elevation it is necessary to "step up" instead of
a gradual slope. For LOS calculation it is necessary to linearly interpolate between cells.
The resolution of this database is considered to be low, and it does not actually represent
actual objects on the terrain. Vegetation is only modeled as an impediment to LOS
calculations. Individual bushes or trees are not modeled, and any vegetation shown is
constant for each grid cell. Buildings are represented only as statistical entities, individual

buildings cannot be shown.

g«nuh
S0 4?“

L W S
k.) Z . o
l' t 7 i . E .
o33 . { | ' .&" -3 ’ ’ . .
-;i‘-_—i. P _‘E;' . 2 ; o _
- N L 'I, R ‘
N ‘; R IR
o f) vy : Lo
i ‘_{’ , ﬁrrsnaych T
;o7 Y S — ¢ g — ! . K
N R 'arm mmcwmn: '_:- " _7‘ e
:& '."./"" [.' $' /F/) : ‘_: N (
&3 (;—_.;/1 ‘,l A T Ry)” . . f —)
'-'{,\‘-\ - - i HEBU’ [L N -". ©T vy
LY W . [- _ e
&l -. !{'I ;e 7 i - ff }- \!‘ \ _'-4‘ \) l Y v-
\ R R R § .
S:uam Y Bty 5_{_

j 0BER 0534, nrcm)sssg‘\,,_/r ;\yﬁ)’ : =
e A i
O HE 3?0 HE 3819.- - l .-

RERSR / s+ RIVER o /'_(_[AYSREL 1%
) TN . ; '8) : iy , o4
\)Hnm E \(.» o ‘HILL w Al (¢ “~~<UU~ R
S A 2 1 N B -
L mE R "y ,,' k| e T R
Vo, B Bl =gt ‘ K I b O '*'.‘ - LR -:! .. B ‘ "
5/é o) X L ' Yo t"‘:’.‘_.J : <l s) 2 \\-é"
- 8 ° ’ \) { ' it .k\ \v"“: = "y \ - ! (v'
e j SRR AT 3| Gt »
R R L ey
"’ >1) M " L ‘ 5 u—) 4"/ . l b II &

Figure 1: Terrain Representation

b. Target Representation

The view presented by the computer are contour maps of the battlefield
consisting of player’s subordinate combat systems, units, and personnel displayed

symbolically. Enemy units that can be seen by friendly forces are also shown as symbols.

[Ref. 3: p. 5]

C. PEGASUS DATABASE
1. Background

The Pegasus database or perspective view database, covers a rectangular area of

Fort Hunter Liggett which covers more than four hundred square kilometers. Itisa

graphical database created from aerial photographs, vegetation heights, and additional
information required for perspective view generation. The database is organized into tiles,
blocks and posts, with posts being the smallest element. The resolution considered for
this thesis is a one square meter post. [Ref. 6: p. 3]

2. Thirty-two Bit Number Representation

Each post is described by a thirty-two bit binary number. There are nine elements

to each 32 bit number, as shown in Figure 2 [Ref. 6: p. 3].

B R LR R +omemmm e +
I3 {2 ! | 1} Pl |
1109876543 21/0/98/7654{3210{9 8/7/6/543 210 |
R I IR LR R i LR LR EERE Al LR AR R R +
5 | | misi |

| ELE iLigcz] NOR | VGH |VID|Als| GSV !
i 12} i ! | {TiB| i
R R e D e R oo PR Y ke R R +

Element Number Maximum

Code of bits Value Description

ELE 11 2047 Elevation in meters

EL2 12 4095 Elevation in half meters

UCI 2 3 Under Cover Index

NOR 4 15 Surface Normal Indicator
VGH 4 15 Vegetation Height Index
VID 2 3 Vegetation ID
NAT 1 1 Nature Bit
SSB 1 1 Sun Shade Bit

6

GSV 63 Gray Shade Value

Figure 2: Pegasus Database Elements

Visualization of each element is detailed in Figure 3. Grid elevation is defined by
ELE and EL2. The NAT element defines whether or not the feature is manmade or
natural. If feature is natural, value is 1. The UCI element is the height above ground of
a feature. The NOR element gives an indication of the surface normal. The VGH
element is the feature height. The VID element when combined with some of the other
elements is used to determine exactly what the feature is. Colors can be represented by
the GSV element, and passage of the sun defined by SSB element. [Ref. 6: p. 3] This

32 bit number is stored as a decimal and must be manipulated to extract the desired data.

.. Typical Overhangin
Obiject B

Terrain Plane

i
ST T T 7T
" ///////////

//////////
///// ////////////
L L L LSS

Figure 3: Visualization of Pegasus Database Elements

‘7

3. Grid Reference Position

The reference position of a grid can be determined by manipulating the array
indexing. As an example, Figure 4 shows a sample 4x5 grid (20 grids, 20 numbers), and
Table 1 shows a 1x20 array called locate[] which represents the 32 bit numbers
describing each grid. To locate the decimal number describing grid position "A" in

locate[], the following array location reference method is used:

locate[x * 5 +y] = 2099378

4
A
3 o
2
1
0
0 1 2 3

Figure 4: Sample Grid
This method starts counting (with zero) at the bottom left grid and counts up the

first column, starting again at the bottom of the next column till grid position reached.

In the example, position "A" is the thirteenth number of the array (2099378).

10

I
1202
1202
1202
1202
1202
1202
1202
1202
1202
1202
1202
1202
1202
2099378
1202
1202
1202
1202
1202
1202

I
Table 1: Locate]]

D. IMPROVED TARGET ACQUISITION ALGORITHM

1. Objective

The objective of the improved algorithm was to develop an improved method of
target detection and acquisition which utilizes the Pegasus database. By being able to use
Pegasus, the algorithm should be able to utilize the higher resolution and actually be able
to determine if lines of sight exist and their quality. [Ref. 2: p. 16]

2. Accomplishments

a. Target Representation
With higher resolution of terrain representation comes the ability to have
more than one LOS. The target used consists of a square three meters by three meters

by one meter, and a one by one by one meter block sitting on the top center, as shown

11

in Figure 5 [Ref. 2: p. 28]. Dependent on relative position of sensor and target up to

eight faces of the target are available for lines of sight.

Figure 5: Target Model

b. Obstruction Representation

Obstructions are based on Pegasus style object representations. With the
higher resolution, objects can have a wide variety of sizes and shapes. Individual trees,
and buildings can be distinguished. Figure 6 [Ref. 2: p. 20] shows the representations
used for obstructions.

¢. Determination of Number of Possible Line’s of Sight

From a sensor located at a fixed position on the terrain, and a target located
at another position, subroutine aspect() is called. Based on the relative position of the
target to sensor, the number of target faces that are presented to the sensor can be
determined. There is a possibility of a maximum of eight faces or a minimum of four
faces that can be presented at a time. By saying "visible" it is only meant that if the view
between sensor and target is completely unobstructed, this is how many faces could be
seen. The top surfaces to the target are not considered, nor are the back faces.

[Ref. 2: p. 28]

12

Small Bullding

10 meter 15 meter

Large Building

Figure 6: Obstruction Models

d. Stepping of Line of Sight

Depending on which distance is larger, the change in the x direction, or the
change in y direction, one meter steps are taken in that direction. A single block is
passed through on each step. Figure 7 shows an example of when the difference in x is
larger than the y, therefore the LOS steps in the x direction one meter at a time. At each
X coordinate, the y value is found using the y slope and origination point. As shown, the

dark line represents the true path of the LOS, the shaded boxed show how the LOS steps.
[Ref. 2: pp. 29-30]

X

Figure 7. Stepping of Line of Sight

E. OBJECTIVE

The goal of this thesis is to add visualization to the improved target acquisition
algorithm. By doing this, the data results of the algorithm can be visually confirmed. It
will also show that it is possible to incorporate existing software into a training
application with minimal programming experience. There are three major-steps that need
to be taken in accomplishing this goal. They are: conversion of FORTRAN to C;
understanding WorldToolKit (WTK); and creating a simulation incorporating the

improved algorithm.

14

1. Conversion

The conversion process will involve breaking down FORTRAN code into specific
functions and correlating these function to C functions. Each C function will then be
tested as a separate program and then added to a main program.

2. WorldToolKit

WTK will require a thorough understanding of its many functions. Specifically
for this project: how to create a terrain with objects on it; create objects; and be able to
move them along the terrain. Additionally, an understanding of how to manipulate
viewpoints, lighting, sensors, and windows will be required.

3. Simulation

This will involve combining WTK into the algorithm such that the visual
representation of the terrain and motion of the target is driven by the improved algorithm.
The simulation should have a target moving along an obstruction constrained terrain and

display target data as the target moves.

15

II. CONVERSION OF CODE AND DATA

A. OBJECTIVE

The objective in converting the improved target acquisition algorithm from
FORTRAN to C is to enable incorporation of WTK (programmed in C) into the improved
algorithm. To simplify further discussions, the improved algorithm will hereafter be
referred to as either FORTRAN code or C code.

The objective in converting 32 bit number data is to be able to manipulate specific

elements. These elements are used to compare LOS with terrain features.

B. CODE CONVERSION

1. C Programming Basics

In order to begin conversion from FORTRAN to C, an understanding of a few
basic C programming concepts is required. These basic concepts are as follows:
preprocessor directives; functions; variables and constants; and pointers. The sample C

program shown in Figure 8 contains examples of each of these concepts.

/* Example of Preprocessor Directive */
#include <stdio.h>

/* Example of Defining a Variable */
int test;

main()

/* Example of a Function */
printf(\nAnswer = %d\n’, test);

/* Example of Using a Pointer */
testl= &test;
}

Figure 8: Basic C Program

a. Preprocessor Directives

After a program has been written, the next step is to compile it. During
compilation, preprocessor directives tell the compiler to accomplish specific tasks. In the
example given previously in Figure 8, #include directs the merger of a disk file (specified
between < >) into the source code by the compiler [Ref. 7: p. 90]. This disk file is called
a header file, by convention it is annotated by the extension .h. When called by the
compiler, header files help check code for syntax and errors. A required C header file
is stdio.h, which stands for standard input-output [Ref. 7: p. 92]. Stdio.h tells the
compiler to be prepared for input and output functions in the program. If utilizing math

functions such as sqrt() and pow() another required header file is math.h.
b. Functions
A function is defined as something used to solve a particular programming

task. An example of a function is shown in Figure 9 [Ref. 8: p. 28].

Function name .
Opening parenthesis for function arguments

func(}«——— Closing parenthesis for function arguments
{ «—————— Opening brace of function body
® Code for
/° tunction body
/
L]

|« Closing brace of function body

2 Function body

Figure 9: Basic C Function

Every C program must have a main() function, which marks the point
where program execution begins and ends. Within main()’s open and closed braces ({}),
execution of program statements that appear first dictate what the program does first.
Some of the standard functions utilized in the C code were printf(), scanf(), ceil(),
floor(), pow(), and sqrt(). In addition to standard functions, specialized functions can be
written to accomplish unique programming tasks. Some example of specialized functions
used in the C code are: terrain(), compare(), and aspect(). Function arguments are

enclosed between the parenthesis, if any are required. An argument is used to pass to the

18

function anything it needs to complete its task. Examples of arguments are, variables,
constants, and pointers. At the end of a function the statement return; is used to return

control back to the calling function.

c. Variables and Constants

In order to correctly manipulate data within a program, it must be correctly
defined within a program. Data is defined as either variables or constants. Variables hold
different types of data such as characters, integers, or floating point decimals, and can be
changed. Constants also hold different types of data, but remain the same throughout the
program.

There are two types of variables, global and local. Global variables are
defined outside a function. Problems can arise if a variable is defined as global and the
same name is used in different program locations, but with different meaning. The value
of one can be inadvertently changed, causing incorrect answers. Local variables are
defined within the opening brace of the function, and will only be used in that function.
[Ref. 7: pp. 298-299]

Local variables can also be defined as automatic or static. The default for
local variables is automatic. Automatic means that when a function returns to the calling
function, local variable values within it are erased. Static means that local variables will
retain their value within a function when it returns to the calling function.
[Ref. 7: p. 312]

d. Pointers

A key aspect to programming in C is the capability of variables pointing
to addresses of other variables. These pointers are variables in themselves and follow the
same rules which govern variables. So, instead of holding data value;, which takes up
memory, pointers provide a means of accessing and changing data by pointing to the
address of another variable. There are two pointer operators in C, the & and *. The &
operator is used to point to the memory address of whatever it precedes. The * operator
either defines a pointer or dereferences the value of the pointer. Figure 10 illustrates how

to use these operators. [Ref. 7: pp. 447-450]

19

/* Defines Pointer Called "ptr" */
int *ptr;

/* Defines "test" as an Integer with Value 10 */
int test=10;

/* Points "ptr" to Address of "test" */
ptr= &test;

Figure 10: Pointer Use Example

2. FORTRAN to C Conversion Procedure

a. FORTRAN Code Description

The FORTRAN code [Ref. 2: pp. 106-118] is organized into a main
program with one subroutine called aspect(). A flowchart for the FORTRAN code is
shown in Appendix A.

The following is a brief description of the logic steps within the FORTRAN
code. The program starts by declaring variables, reading data from an external file into
array tile(), and manipulating this data into decimal form. There are ten target locations
stored in array locate(). DO loop (1) is entered with the maximum number of iterations
being ten (ten target locations). After retrieving the first target location from locate(),
subroutine aspect() is called. Within aspect(), the number of target faces visible and
location of these faces, is calculated. These are returned to the main program as values
of "n" and array vistgt(). Next DO loop (2) is entered with the maximum number of
iterations being "n". Within this DO loop, an IF loop is entered. IF the slope of the line
between target and sensor is greater in the x direction then xstep operations are
performed. If slope is greater in the y direction, then ystep operations are performed.
Depending on which was used in a particular iteration, both xstep and ystep operations
enter another IF loop. IF a LOS exists then calculations are performed and DO loop (2)
is re-entered. IF the LOS is terminated due to an obstruction DO loop (2) is re-entered
without calculations. After "n" faces of a target is tested, DO loop (1) is re-entered for

the next target location and the procedure is repeated.

20

b. Conversion

Within the main section of the FORTRAN code there are four different
functional areas. The functional areas are: header operations; stepping in x direction;
stepping in y direction; and calculations. Each of these four areas and the subroutine were
converted to C separately, tested, and then one by one incorporated into a main C
program.

Initially it was hoped that there could be a line for line translation from
FORTRAN to C. This became unreasonable due to some procedural differences in code
translation. First, bitwise manipulation differed due to not having a straight translation
for the FORTRAN function ibits(). In C, there are two bitwise operators called AND and
SHIFT. Second, mathematical functions differed due to not having a straight translation
for the FORTRAN math function nint(), which round up or down to the nearest integer.
In C, two functions had to be set up utilizing function ceil() (rounds up) and function
floor() (rounds down). Third, relational operator structures differed due to C not using
numbered loops which can use a continue statement to return to the beginning of the
loop. C uses a goto statement to return to beginning of a loop.

It became clear that with C, there was an opportunity to organize the C
code into specific function calls. The areas that the FORTRAN code were broken into
for translation, now became C functions. Additionally, other areas within the FORTRAN
code main program were also broken into C functions, such as compare() and display().

Testing involved injecting test print statements into the FORTRAN code
at key locations. Then entering specific variable values and running that section of C

code. Finally, comparing C code results with output from FORTRAN code.

c. C Code Description

Once each of the separate sections of C code were tested satisfactorily, each
was individually incorporated into a main program. The final C code was then tested and
compared to FORTRAN code results. This conversion was completed satisfactorily. See

Appendix B for flowchart of C code organization.

The following is a brief description of the logic steps for the C code. The
program starts by declaring variables, reading data from an external file into array tile[],
and manipulating this data into decimal form. FOR loop (1) is entered with the maximum
number of iterations being ten (ten target locations). After retrieving the first target
location from locate[][], function aspect() is called. Within aspect(), the number of
target faces visible and location of these faces, is calculated. These are returned to the
main program as values of "n" and array vistgt[][]. Next FOR loop (2) is entered with
the maximum number of iterations being "n". Within this FOR loop, an IF loop is
entered. IF the slope of the line between target and sensor is greater in the x direction
then xstep operations are performed. Within the xstep operations, functions ninty() and
compare() are called. If slope is greater in the y direction, then ystep operations are
performed. Within the ystep operations functions nintx() and compare() are called.
Depending on which was used in a particular iteration, both xstep and ystep operations
enter another IF loop. IF a LOS exists then calculations are performed (continue:) and
FOR loop (2) is re-entered. IF the LOS is terminated due to an obstruction function
display() is called and FOR loop (2) is re-entered without calculations (finish:). After
"n" faces of a target is tested, FOR loop (1) is re-entered for the next target location and

the procedure is repeated.

C. DATA CONVERSION

1. 32 Bit Number Conversion

The 32 bit numbers are stored as decimals and must be manipulated in order to
extract the desired data. In C, the AND(&) and SHIFT(>>) functions make it possible
to emulate the FORTRAN function ibits(). The AND function is a bitwise operator and
makes a bit by bit comparison of the number presented. The SHIFT function performs
a left or right shift of bits within a binary number. An example would be to extract the
NAT element (which is the 7th element) from a 32 bit number located in array test[].
First, test]] is ANDed with 128 (bintest[J=test[] & 128). The number 128 being base
ten equivalent of binary number 10000000. The result (bintest[]) will be a binary
representation of the first 7 bits of the 32 bit number. This number is then SHIFTed right

22

7 bits (nat[]J=bintest]] >> 7) leaving the bit that represents the NAT element.
[Ref. 7: pp. 196-203]

2. Terrain Modeling

In order to test the C code visually with WTK, the battlefield used to test the
FORTRAN code will be re-created. The terrain for this battlefield consists of flat ground,
small trees, large trees, and a small building. Each of these objects has a known height
and undercover index since the higher resolution Pegasus database was used. The actual

creation of the battlefield will be discussed in a later chapter.

3. Program CONVERT.C Description

To facilitate the creation of the test battlefield, program CONVERT.C
[Ref. 2: pp. 101-102] was also converted from FORTRAN to C. The flowchart for
CONVERT.C is shown in Appendix C.

The following is a brief description of program CONVERT.C. The program starts
by declaring variable and arrays. The user is then prompted to input how many 32 bit
numbers to be created, this input is read as ans from the keyboard. FOR loop (1) is
entered with maximum iterations of ans. Next, FOR loop (2) array t[] is initialized to
zero. Next, FOR loop (3) is entered with iteration counter i and maximum number of
iterations of thirty-one. For each i from 1 to 9 an IF loop is entered. For purposes of
brevity only the first IF loop will be described. IF i equals 1 then variable bit0 equals
0 and the user is prompted to enter the value of GSV. This input is read from the
keyboard as rem. If the number entered is equal to zero, then the next IF loop is entered.
For every IF loop, if the number entered is not zero then the number is converted into

binary. The result is a 32 bit binary number describing a one meter square of terrain.

24

1. WORLDTOOLKIT

A. OBJECTIVE

The objective with regard to the utilization of WIK is to create a virtual world
which will look like the test battlefield. Within the virtual world it will be necessary to
represent targets and obstructions both realistically and in the form that the C code sees

them.

B. WORLDTOOLKIT PROGRAMMING BASICS

1. Overview

WTK is a commercially available software program developed by SENSES
Corporation, and is essentially a library of C functions. It provides an opportunity to
create three dimensional (3-D) simulations and models with limited C programming skills.
This is accomplished by adding specific WTK functions and their arguments to C source
code. These WTK functions are broken down into classes. Assigned to each function
class are subroutines identified by a handle. An example of the graphical object class
handle would be WTobject_new. All functions require objects of a class to be pointed
to as the first argument. As an example, WTobject *cube creates a new object and
returns a pointer to cube. Pointers were discussed in the previous chapter. Somewhere
later in a program, cube=WTobject_new() would be used to create a new object. In the
next several sections, the major classes and objects utilized in WTK for this thesis will

be discussed.

2. Universe Class

In its most basic sense, the universe created in WTK is a container [Ref. 9: p. 2-1].
Inside the universe, all objects created are either stored (static) or manipulated (dynamic).
Since only one universe can exist at a time, pointers are not required as a first argument
when creating or loading a universe. The universe function handles are what is used to
control simulation loop repetition activity. An important part of the flexibility in using

WTK is the user input to the universe action function as illustrated in Figure 11

[Ref 9: p. 2-8].

WTunwverse _go()
to enter simulation loop

Sensors are read. l

'

The universe's action function is called.

] | The order in which
. © | these three items
Objects are updated with sensor input. LA are sxecuted is

l user-definable.

Graphical objects perform tasks.

v

The universe is rendered.]

WTuniverse _stop()
to exit simulation loop J

Figure 11: WTK Simulation Loop

3. Graphical Object Class

Graphical objects are the building blocks of WTK [Ref. 9: p. 3-1]. They provide
the user with many options in which to manipulate the simulation. Graphical objects can,
interact with the user, interact with other objects, be hierarchial organized, have their
motion effected by sensors, have tasks assigned, and have data associated to them
[Ref. 9: p. 3-1]. For this thesis, objects were created from internal predefined object types
using WTK functions, and by importing DXF format files generated from Autodesk. By
convention, WTK uses the right hand rule for defining the world coordinate reference
frame [Ref. 9: p. 3-7]. The world coordinate reference frame is fixed in space and
therefore independent of any objects within the universe. However, a local coordinate
reference frame can be created by determining the objects vertices and setting it to these
planes. The following examples of graphical object class handles used in this thesis,
WTobject_getposition(), WTobject_newblock(), WTobject_newsphere(),
WTobject_changecolor(), and WTobject_setposition().

26

4. Terrain Objects

Terrain objects represent landscape, and WTK can create three types, flat, random,
and data generated. The test battlefield will be created as a flat 35x50 (square meters)
terrain object. By default, terrain objects are given a checkerboard appearance to aid
perspective view visualization. The default local reference frame for terrain objects is
taken to be the same as world coordinate reference frame. Terrain object handle

WTterrain_flat() was used to create the flat terrain test battlefield. [Ref. 9: p. 6-1}

5. Textures

Textures are equivalent to applying paint to surfaces of an object. This is done
in order to improve realism and provide a means to conserve modelling labor and
rendering speed by allowing a single object to be painted instead of modeling all of its
3-D details. Textures are obtained from video images or synthetically and are identified
by the extension .rgb. Wood texturing was applied to cylinders to appear as tree trunks.
Grass texturing was applied to spheres to appear as leaves. Building window texturing
was applied to the small building to improve its realism. The texture handle
WTobject_settexture() was used to apply textures to objects. [Ref. 9: pp. 8-1,8-2]

6. Light Objects

WTK has two kinds of lights, direct and ambient [Ref. 9: p. 9-1]. Ambient light
is background light and it lights objects equally regardless of position or orientation.
Directed light can be directed in a particular direction to produce shadows and contrast
between objects. More than one light may be added to a simulation but, the more lights
the greater impact on performance due to shading computations. The light object handles
WTlight_new() and WTlight_setambient() were used to create a directed light source
and set the ambient light source, respectively.

7. Sensor Class

Sensors allow the user to interact with the simulation directly. They are used to
generate positional and orientational data by reading inputs from the real world
[Ref. 9: p. 10-1]. A Spaceball by Spaceball Technology was created as a sensor and used
to move a viewpoint through the test battlefield. The sensor handle

27

WTsensor_setsensitivity() set Spaceball sensor sensitivity to a default value and

spaceball=WTspaceball_new() defined the Spaceball as a new sensor.

8. Viewpoints

In a window, the universe is drawn from parameters set to a viewpoint
[Ref. 9: p. 11-1]. The major parameters are defined as, position, orientation, and
direction. They allow the user to place viewpoints anywhere in the universe and look in
specific directions and orientations. The viewpoint handle WTviewpoint_addsensor()
was used to attach a viewpoint to the Spaceball. To create a new viewpoint, the

viewpoint handle WTviewpoint_new() was used.

9. Path Class

A path is a combination of nodes which store a specific locations position and
orientation data [Ref. 9: p. 13-1]. An object or viewpoint can be attached to a path, and
moved from node to node. The more nodes, the smoother the transition between nodes.
There is the capability to interpolate between nodes, which is especially effective when
the path follows a curve. Paths can also be recorded, edited, saved, and played back
[Ref. 9: p. 13-1]. Path class handle WTpath_load() was used to load external path files
identified by extension .pth, which were created by an external program. This external

path program will be discussed in the next chapter.

10. Window Class

A window object is a region of the screen where viewpoints are to be displayed.
Several windows can be created, each with a different viewpoint attached. These
windows can be created and deleted at any time during the simulation. The location and
size of the windows is specified in the function arguments. The windpw class handle

WTwindow_new() was used to create new windows. [Ref. 9: p. 15-1]

28

IV. SIMULATIONS USING WORLDTOOLKIT

A. OBJECTIVE

The simulations objective is to demonstrate that WTK can be incorporated into the
C code. In doing so, they will also show what it is C code does, and visually validate the
output.

Creating simulations will comprise of two steps and two different test battlefields.
First, converted programs CONVERT.C and BTLFLD_TERR.C will be used to create a
test battlefield with ground, obstruction, and target data. Second, WTK will create a
virtual world test battlefield which will be incorporated into C code.

Three simulations were created to meet required objectives. They are PROG1.C,
PROG2.C, and PROG3.C. This chapter will describe methodology used to create each

simulation and their major functions.

B. TEST BATTLEFIELD CREATION

1. Test Battlefields
The test battlefields used in this thesis are similar to the 35x50 grid on which
ground, obstructions and target were placed in ONEMETER.F. The only difference being
actual location of targets. Figure 12 shows grid (ground), location of obstructions, and
locations of target used in C code. Since there are actually two types of test battlefields
that need to be constructed, the following is a brief description of both.
a. C Code Test Battlefield
The C code test battlefield is a database of Pegasus numbers that C code
will read, manipulate, and then use in comparison with calculations of LOS. This
database is created in two steps using two different programs. From program
CONVERT.C, 32 bit Pegasus numbers are created for flat ground, three meter tall trees
with no undercover index, eight meter tall trees with undercover index of one meter, and
an eight meter tall small building (trees and building were shown in Figure 6). These are
the only obstructions considered for this thesis.

29

Figure 12: Test Battlefield

Prc;gram BTLFLD_TERR.C (also converted from FORTRAN to C) creates
a 1x1750 (35x50) database array of Pegasus numbers obtained from CONVERT.C.

Within BTLFLD_TERR.C, the entire database is first initialized as flat ground, then user

is queried whether a three meter tree is to be placed on the flat ground. If answer is yes,

then user is prompted to enter coordinate location. This is repeated until no more three

meter trees are desired, same procedure is then repeated for eight meter trees and small

30

buildings. For each obstruction entered, the flat ground 32 bit number is replaced by a
new value. BTLFLD TERR.C utilizes the array location referencing method previously
discussed in Chapter 1 for placing appropriate 32 bit number in the database. Output
from BTLFLD TERR.C is written to an external data file called BTLFLD TERR.DAT.
The flowchart and code for BTLFLD_TERR.C are shown in Appendix F and Appendix
G, respectively.
b. WTK Battlefield Terrain
The other test battlefield created is the one that WTK will visually dlsplay
in the virtual world. From the library of WTK functions, the 35x50 flat grid (ground) is
created. Located on the ground in same coordinate locations as C code battlefield, are
same size trees and building. For different simulations, obstructions will be displayed
differently. In PROG1.C and PROG2.C trees and building shapes will be created to
appear as representative of real trees as possible. Additionally, in PROGI .C, textures will
be applied to add realism. In PROG3.C, trees and building will be displayed as C code
sees then, i.e., cubed entities.
2. Battlefield Targets

- There are also going to be two types of target. C code will see the cubed target
shown in Figure 5, and WTK will display a tank, shown in Figure 13 and the cubed
target. To display targets, WTK loads a .dxf file to render the tank for PROG1.C and
PROG2.C and a .dxf file to render the cubed target for PROG3.C.

Figure 13: Tank Target

31

C. SIMULATION PROGRAMS DESCRIPTION

1. Overview

Each of the three programs created is essentially the same C code beginning, with
WTK successfully incorporated as a function and LOS calculations imbedded within
WTK. There are subtle changes to each program in their C code and each has major
differences in what WTK displays.

Program PATH.C is an external WTK program that is used to create a user
defined path. At screen prompts, user inputs path node locations and rotation. After
entering all required nodes, user can select a method of interpolation to smooth out
motion along any curves in path. Output from PATH.C [Ref. 10: pp. 69-75] is a file
designated by extension .pth. The flowchart for PATH.C is shown in Appendix E. This
program is used to create paths used in PROG2.C and PROG3.C.

Program PROGI.C utilizes an internal array of target locations (locate[]) which
WTK uses to place the tank. The user manually presses a Spaceball button to move the
tank to predetermined positions behind the trees and building, while displaying target data
output at each prompt. There is an option to add viewpoints of universe from two
additional windows, which can also be deleted at any time. The default window view is
attached to the Spaceball, view from window one is from perspective of observer located
at position (0,0), and view from window two is from back right corner looking toward
sensor.

Program PROG2.C does not utilize an internal array of target locations, instead
it uses WTK function WTobject _getposition() to obtain tank locations as the tank follows
a predetermined path which was created using program PATH.C. The movement of the
tank requires no user input other than to start motion by pressing a Spaceball button. In
addition, output is continuously displayed to the screen. The same window options exist
as with PROG1.C.

Program PROG3.C is similar to PROG2.C except it has a cubed target following
a slightly different predetermined path created using PATH.C. Additionally, the default

window viewpoint is different, and there is only option for one additional window. The

32

path is essentially the same, but the cubed target does not have any rotation i.e., front face
remains aligned with the x axis. The default view is from observer perspective located
at position (0,0) and view from additional window is an overhead view.

The following three sections are a description of major functions that take place
in each program. The flowchart and code for PROG1.C are shown in Appendix F and
G, respectively. The flowchart and code for PROG2.C are shown in Appendix H and I,
respectively. The flowchart and code for PROG3.C are shown in Appendix J and K,

respectively.

2. Program PROGI1.C

Program PROGI.C starts by declaring global variables, pointers, windows, and
viewpoints. Function main() is entered and Pegasus database data is read into array tile[]
from external file BTLFLD_TERR.DAT. This data is then manipulated by AND and
SHIFT operators (previously discussed) ending with array tile[] being converted into
various element arrays uci[], vghindex[], vgh[], vid[], nat[], and elev[]. These
element arrays will be used to compare terrain data with each LOS to determine if LOS
passes through a post. Function terrain() is then called, which for all practical purposes
is WTK. The first action in terrain() is to call function my_action(). Within
my_action(), each possible action prescribed by pressing a Spaceball button is defined.
Simulation will begin if Spaceball button five is pressed, since this is the most important
button, its actions will be detailed closer. Once button five is pressed, function tgtxtyt()
is called to determine target position location by reading array locate[][]. Based on this
data, a rotational value is assigned for rotating of target at a specific location. Next,
function los() is called, with first action being to call function aspect() and determine
number of faces presented for detection and location of these faces. Af.ter returning to
los() with this data, each LOS from sensor to target face is stepped post by post. The
direction of motion of LOS from Isost to post is determined in part by calculations
involving functions nintx() and minty(). In each target face LOS iteration, function
compare() is called to compare LOS data to terrain data from various element arrays.

The end result from los() is the number of LOS, range to target, percent of faces viewed,

33

and area of target viewed. After returning to my_action() from los(), function datatgt()
is called to display the LOS data to screen. Output data from PROGI.C is shown in
Table 2. Control is then returned back to terrain(). Back in terrain(), function tree()
is called and trees are created from data read from external data file TREE.DAT. Each
tree consists of a stretched sphere attached to a cylinder. Texturing is applied to trees to
enhance authenticity. After returning to terrain(), building is created, textured, and
positioned, sensor is created and positioned, and tank is loaded from external file
TANK.DXF. Finally, WTK creates universe and all objects in it. The next time
Spaceball button five is pressed, universe data is updated to show tank in its new position
and target data printed to screen is also updated. Simulation ends when Spaceball button

eight is pressed at which time control is returned to main() and program PROGI.C ends.

\

PROGI1.C PROG2.C PROG3.C

xt |yt [Range |% |Area |Range | % | Area Range [% | Area
2 |46 [46.04 [100 [4.02 {4604 |100 [4.02 |46.04 |100 4.02
7 |46 [46.53 |100 |4.40 (4653 | 100 |4.40 |46.53 | 100 4.40
12 [46 (4754 [100 |4.73 [4754 |[100 |4.73 |4754 |100 4.73
17 [46 (49.04 |75 |4.08 |49.04 |75 |4.08 4904 |75 4.08
22 146 (5099 |75 [3.41 [5099 |75 |3.41 |s5099 |75 3.41
26 44 [51.11 |50 (232 [51.11 S50 (232 |s111 |50 2.32
30 141 |5080 |62 |[3.03 (5080 |62 |3.03 |5.80 62 |[3.03
33 |37 (4958 |75 |4.06 |4958 |75 |4.06 |4958 |75 4.06
33 132 14597 (25 |1.33 [4597 [25 |1.33 |4597 |25 1.33
33 |27 |4264 |[100 |546 [4264 [100 |5.46 |42.64 | 100 5.46
33 122 |39.66 |100 [5.36 [39.66 |[100 |536 [39.66 | 100 5.36

\
Table 2: Output Data

34

3. Program PROG2.C

Program PROG2.C starts by declaring global variables, pointers, windows, and
viewpoints. Function main() is entered and Pegasus database data is read into array tile[]
from external file BTLFLD TERR.DAT. This data is then manipulated by AND and
SHIFT operators (previously discussed) ending with array tile[] being converted into
various element arrays uci[], vghindex[], vgh[], vid[], nat[], and elev[]. These
element arrays will be used to compare terrain data with each LOS to determine if LOS
passes through a post. Function terrain() is then called, which for all practical purposes
is WTK. The first action in terrain() is to call function my_action(). Within
my_action(), each possible action prescribed by pressing a Spaceball button is defined.
Simulation will begin if Spaceball button five is pressed, since this is the most important
button, its actions will be detailed closer. Once button five is pressed, the tank is attached
to a path called tnkpth, this path is then started. Next, depending on data retrieved from
WTobject_getposition() matching a predetermined location, function tgtposn() is called.
Within tgtposn(), the targets position is determined, and function los() is called. Within
los(), the first action is to call function aspect() to determine number of faces presented
for detection and location of these faces. After returning to los() with this dafa, each
LOS from sensor to target face is stepped post by post. The direction of motion of LOS
from post to post is determined in part by calculations involving functions nintx() and
ninty(). In each target face LOS iteration, function compare() is called to compare LOS
data to terrain data from the various element arrays. The end result from los() is number
of LOS, range to target, percent of faces viewed, and area of target viewed. After
returning to tgtposn() from los(), function datatgt() is called to display LOS data to
screen. Output data from PROG2.C is shown in Table 2. Control is then returned back
to terrain(). Back in terrain(), function tree() is called and trees are created from data
read from external data file TREE.DAT. Each tree consists of a stretched sphere attached
to a cylinder. Texturing is not applied to the trees in this simulation. After returning to
terrain(), building is created and positioned, sensor is created and positioned, tank is

loaded from external file TANK180.DXF, and external tank path TANK.PTH is loaded.

35

Finally, WTK creates universe and all objects in it. The universe is updated continuously
while the tank follows the path and the target data printed to screen is also updated
continuously. The simulation end when Spaceball button eight is pressed at which time

control is returned to main() and program PROG2.C ends.

4. Program PROGS3.C

Program PROG3.C starts by declaring global variables, pointers, windows, and
viewpoints. Function main() is entered and Pegasus database data is read into array tile[]
from external file BTLFLD_TERR.DAT. This data is then manipulated by AND and
SHIFT operators (previously discussed) ending with array tile[] being converted into
various element arrays uci[], vghindex[], vgh[], vid[], nat[], and elev]]. These
element arrays will be used to compare terrain data with each LOS to determine if LOS
passes through a post. Function terrain() is then called, which for all practical purposes
is WTK. The first action in terrain() is to call function my_action(). Within
my_action(), each possible action prescribed by pressing a Spaceball button is defined.
Simulation will begin if Spaceball button four is pressed, since this is the most important
button, its actions will be detailed closer. Once button four is pressed, cube target is
attached to a path called tnkpth, this path is then started. Next, depending on data
retrieved from WTobject_getposition() matching a predetermined location, function
tgtposn() is called. Within tgtposn(), targets position is determined, and function los()
is called. Within les(), the first action is to call function aspect() to determine the
number of faces presented for detection and the location of these faces. After returning
to los() with this data, each LOS from sensor to target face is stepped post by post. The
direction of motion of LOS from post to post is determined in part by calculations
involving functions nintx() and ninty(). In each target face LOS iteration, function
compare() is called to compare LOS data to terrain data from the different arrays. The
end result from los() is number of LOS, range to target, percent of faces viewed, and area
of target viewed. After returning to tgtposn() from los(), function datatgt() is called to
display the LOS data to screen. Output from PROG3.C is shown in Table 2. Control is

then returned back to terrain(). Back in terrain(), building is created and positioned,

36

sensor is created and positioned, cube target is loaded from external file CUBETGT.DXF,
and external tank path CUBE.PTH is loaded. The trees are then created from internal
WTK object functions. Each tree consists of cubes arranged to represent Figure 6.
Finally, WTK creates universe and all objects in it. The universe is updated continuously
while the cube target follows the path and the target data printed to screen is also updated
continuously. The simulation end when Spaceball button eight is pressed at which time

control is returned to main() and program PROG3.C ends.

D. TERRAIN VARIATIONS

1. Existing Ground Elevation Representation

A limitation to simulation realism is WTK representing all ground elevations to
be flat. Within WTK there are two additional ways of representing terrain ground,
randomizing ground elevation heights and reading a data file to generate ground elevation
heights. Both methods still produce a terrain grid that has a checkerboard appearance.
The latter of these two methods is an improvement and was researched to try and develop

a method of improving the reality of ground elevation visualization.

2. U.S. Geological Survey Terrain

The ground visualization improvement method researched involved trying to obtain
existing ground elevation data from the U.S. Geological Survey (USGS). The USGS has
two types of digital cartographic/geographic data files of possible interest. They are
Digital Line Graph (DLG) files and Digital Elevation Model (DEM) files. Of the two
types, DEM files represent the greatest potential for improving WTK ground visualization.
Figure 14 shows an example of what a DEM can display. [Ref. 11: p. 1]

A DEM consists of an array of elevations that are referenced in the UTM
coordinate system. Of several different size DEM files available, the 7.5 minute
quadrangle was chosen. A 7.5 minute DEM is a 7.5x7.5 minute block of data generated
from contour maps or scanning photographs. The data is organized from south to north
in profiles that are then ordered west to east. The spacing between profiles is 30 meters.

Figure 15 shows how a 7.5 minute DEM is organized. [Ref. 11: pp. 2-4]

2000000000 ;4

g S0eeesecee =

= “peessseoe =
z 60000000
l 00000000
900600000
4T —eeecescee
600000000
IXXEX NN N

o
L J
L
o
. .
L
o
®
{

100000000 ¢

Pt 1
——’ '[-o—Ax Pt 4

Easting

Central Meridian (CM)

A X = 30 meters (Easting)
Ay = 30 meters (Northing)
O = Elevation pont in
adjacent quadrangle
® = Eievation point
@ = First point along profile
{J = Corner of DEM potygon
(7.5-minute quadrangle corners)

(Example 1s a quadrangle west of
central mendian ot UTM zone.)

Figure 15: 7.5 Minute DEM Organization

Each DEM is organized into three logical records, Type A, Type B, and Type C.

Type A records contain header information about the DEM, including the number of

38

Type B records contained in the DEM. Type B records contain some header information
about the profile followed by elevation data. Type C records contain statistical
information about the accuracy of the data. The elevation information in the Type B
records is what is needed by WTK. [Ref. 11: p. 15]

A 7.5 minute DEM was transferred from a USGS nine track magnetic tape onto
an IRIS Indigo Workstation. A FORTRAN program was written to attempt to extract just
the elevation data from the Type B records and put it in a format that WTK could read.
Unfortunately due to time constraints, this effort was not able to be completed. The

attempts to date had been unsuccessful.

39

40

V. DISCUSSION

This thesis has proven the capability of incorporating a commercially available
visualization software program (WTK) into an existing training algorithm (C version of
improved target acquisition algorithm). By successfully creating simulations with WTK
incorporated into the C code, output data from the improved algorithm can now validated
visually. The visualization of the improved algorithm also proves that the higher
resolution Pegasus database can significantly improve the way Janus detects and acquires
targets. This is accomplished by giving it the ability to have more than one LOS between
sensor and target.

During the initial steps of learning C programming there were some lessons
learned that are worthy of mentioning. First, verify that every C command ends with a
semicolon (;). During compiling, errors will be created in lines below the missing
semicolon. This gives an indication that there is a severe problem with a majority of the
program, when in fact only one item is missing. Second, the importance of correctly
defining variables as local or global cannot be understated. A thorough understanding of
variables to be used and their interaction between different functions is a necessity.
Finally, there must be a complete understanding of any unique functions that need to be
translated. As an example, in order to translate the FORTRAN function ibits(), and
understanding of binary numbers is required. This function first takes a decimal number
and converts it to binary. Then depending on function arguments, extracts a specified
number of bits, starting at a specified bit, and converts this binary number back into
decimal form. The C equivalent to ibits() are the bitwise operators AND and SHIFT,
previously discussed in Chapter II.

Programming in WTK required extensive use of the reference manual. The
reference manual lists the library of functions within WTK and is very specific in their
use. However, the proper arguments required to successfully utilize a function requires
additional understanding of how WTK uses these arguments. As an example, if using
WTobject_move() to move an object, one of the arguments is WTpq which is used to

describe translation and rotation. If using WTobject_translate() to move an object, one

41

of the arguments is WTp3, which describes an amount of relative motion. It can be
confusing that the object is being moved in essentially the same fashion, however WTK

needs the different arguments to complete the task.

An important factor in the realism of a simulation is object speed and smoothness
of motion. In PROG2.C and PROG3.C both targets move along a path. Having the
targets moving at a constant speed and without hesitation at nodes does add realism to the
simulation. When moving along a path, the number of interpolation points between nodes
directly impacts the smoothness of motion. Several factors effect the speed of objects
moving along a path in WTK. The largest impact on speed comes from adding additional
windows to the simulation. In PROG2.C and PROG3.C, if viewing target motion from
just the default window, adding the sensor view window slows target motion significantly.
To a smaller degree, applying textures to object faces slows speed down, as does loading
a large object from an external file. There are ways to overcome the last two
degradations in speed. When applying textures, only apply to sides of objects that will
be seen. For loading large objects, in the arguments for loading an external object there
is a scaling factor that can reduce the size of what is rendered. A factor in the speed not
related to WTK directly is the speed of the workstation being used to run the simulation,
the faster the better.

In the C code, only vertical faces of the target are considered for detection.
Horizontal faces need to accounted for in both detection and as part of the total area
presented for targeting. This is directly tied with the need to detect and acquire targets,
moving on a non-flat terrain, in which horizontal faces may be presented for viewing, or
with a sensor located above or below the target. Either way, an improved method of
geometrically representing the target is needed to improve the C code -to account for
additional views of the target. A possible way to make this improvement is to change
how targets are represented. At present, targets are not represented by Pegasus style
numbers, but as fixed values within the C code. In order to more effectively use the C
code, target representation could be added to the terrain description using Pegasus

numbers.

42

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Both C and WTK have the capability of being utilized with minimal prior
programming experience.

The improved target acquisition algorithm has been successfully converted
into C.

WTK has been successfully incorporated into the C version of the
improved algorithm. |

Simulations created visually validate output data by showing there are
more is one LOS when using a terrain described by the higher resolution
Pegasus database.

WTK can be used to add visualization to algorithms that produce positional
information about an object.

Visual validation of Pegasus capabilities to improve Janus by having more
than one LOS. Improved algorithm proven to have potential to replace
DOLOS subroutine.

B. RECOMMENDATIONS
The use of WTK in the improved target acquisition algorithm has shown visually

that the improved algorithm and Pegasus database could enhance Janus by improving

scenario realism. The following are areas which could positively impact Janus:

Improve existing WTK simulations by, using non-flat terrain, targets
represented by Pegasus numbers, and have both sensor and target moving.
Incorporate improved algorithm into Perspective View Generator model.

Incorporate improved algorithm into Janus.

43

APPENDIX A.

START

Header
Operations

CALL
Function
ASPECT

XSTEP
Operations

FLOWCHART ONEMETER.F

YSTEP
Operations

CALCULATIONS

CALCULATIONS

START

Header
Operations

APPENDIX B. FLOWCHART C CODE

CALL
Function
ASPECT

v

YSTEP:

CALL
Function
NINTY

v

v

CALL
Function
NINTX

CALL
Function
COMPARE

v

CALL
Function
COMPARE

FALSE

CALL
Function
DISPLAY

v

FINISH:

END IF

TRUE

FALSE

CONTINUE:

CALL
Function
DISPLAY

v

FINISH

END IF

END

48

END IF

TRUE

CONTINUE:

APPENDIX C. FLOWCHART CONVERT.C

Header
Operations

FOR
a=0; a<ans;
at+

EXIT Loor

t{l=0

REM: <

49

FALSE

CALCULATE
rem =

o v

GOTO ||

REM

CALCULATE

v

SET
posn [] =sum

50

APPENDIX D. FLOWCHART BTLFLD_TERR.C

START

Header
Operations

FOR
i-0;i<=1749;
i++

EXIT LOOP

d[]=

L

THREE: o~

FALSE

5
H |

SET
db[]=

&
)

51

FALSE

EIGHT: .<

TRUE

END IF

X

SAMLL: <

SET
db[]=

52

FALSE

TRUE

SET
d[]=

53

54

APPENDIX E. FLOWCHART PATH.C

START

Header
Operations
CALL
Function
GETCHAR
SWITCH
QUIT NEW
CALL CALL
Function Function
QUIT NEW_PATH
CALL
Function

GET_PTHNAME

v

CALL
Function
GET_COORD

v

ANOTHER_POINT: ‘——

v

CALL
Function
GETCHAR

55

SWITCH

R

56

NO I YES
CALL GOTO
Function
INTERPOLATE ANOTHER_POINT

START

APPENDIX F. FLOWCHART PROGI1.C

Header
Operations

v

CALL
Function
TERRAIN

TERRAIN()

CALL
Function - MY_ACTIONS()
MY_ACTIONS
CALL CALL
Function Function
TREE TGTXTXY
RETURN

57

CALL
Function --=-- LOS()
LOS

v

CALL
Function
DATATGT

CALL
Function
ASPECT

RETURN

v

CALL
Function
NINTX or

NINTY

v

CALL
Function
COMPARE

RETURN

58

APPENDIX G. PROGRAM PROGI1.C
/* PROGRAM PROGI1.C */

/**/
/* This program calculates Line Of Sight (LOS) data and visualizes a target moving*/
/* through a 35x50 grid using a database of Pegasus numbers and is designed to ~ */
/* incorporate attenuation by vegetation. The main section of this program calls */
/* function terrain() which is used to start WorldToolKit and create a universe */
/* where there is a flat terrain with trees and a building located on it. The trees and*/
/* building are represented as close approximations to real objects. The simulation */
/* has the target moving behind the trees and building by manually pressing the */
/* spaceball. Each press of spaceball button FIVE moves the target one position. */
/* Function terrain() calls function los() which is used to calculate target data. - */
/**/
/* Standard C and WorldToolKit header files */

#include <stdio.h>

#include <math.h>

#include"wt.h"

#include"wt.p"

/* Defines a pointer spaceball to structure type WTsensor */
static WTsensor *spaceball=NULL;
static WTsensor *mouse=NULL;

/* Calls function tree() but does not pass or return any values */
static void tree();

/* Defines windows and viewpoints */
static WTwindow *winl, *win2;
static WTviewpoint *objviewl, *objview2;

/* Defines objects */
WTobject *bldg, *copy, *cyl, *original, *sensor, *sphere, *tank, *terrobj;

/* Defines pointers to WTp3, WTq, and WTpq structures */
WTp3 at,dpl,dp2,dp3,dp4,dp5,dir,factors,p,p1,p2,ppp1,ppp2,pt;
WTq ppl,pp2;

WTpq modelview;

/* Defines light object to be a pointer to type WTlight */
WTlight *mylight;

59

/* Initialize arrays and declares variables */

int ans,c,cxt,cyt,ho,ht,i,ix,iy,idx,idy,istart,istop,j,n,nolos,prcnt,xs,xt,xmax,xmin,xstart,ys;
int yt.y,max,ymin,ystart,zs,zt,zdirt,ztree,binelev[1750], binnat[1 750],binuci[1750];

int binvghindex[1750],binvid[175 0],elev[1750],locate[12][3],nat[1 750],realvgh[10];

int tgt[17][5],tile[1750],uci[1750],vgh[1 750],vid[1750],vghindex[1740],vistgt[9][9];
float aproj,atten,attenf,dx,dy,dz,denfol,dist,r,rad,rdx,rdy,row,rdns,range;

float totarea,visaproj,x,y,y_rotate,z,zx,zy,mdata[7][3];

/* Standard C file pointers */
FILE *fp;
FILE *fpl;

main()

{

/* Reads database information into array from data file "btlfld_terr.dat" */
=fopen("btlfld_terr.dat","r");
for (i=0; i<=1749; i++)

{

fscanf(fp," %d", &tile[i]);
}

fclose(fp);

/* Assigns 1 meter of foliage an attenuation of 30% of the LOS */
denfol=0.3;

/* The vegetation height from Pegasus has values of 0-15, each of these values
represents a particular height or range of heights. The following is used to correlate
the vgh value to a meaningful height */

realvgh[0]=0; -
realvgh[1]=0;

realvgh[2]=1;

realvgh[3]=2;

realvgh[4]=3;

realvgh[5]=4;

realvgh[6]=5;

realvgh[7]=8;

realvgh[8]=10;

realvgh[9]=15;

60

realvgh[10]=20;
realvgh[11]=25;
realvgh[12]=30;
realvgh[13]=35;
realvgh[14]=40;
realvgh[15]=47,

/* Once the database for the grid desired has been read into an array, the components
of information are extracted from the 32 bit number using the AND and SHIFT
functions. The groups of information of use in the program are placed in their own
arrays for rapid recall during calculations as follows:

elevation of highest point in grid - ELEV
under cover index - UCI
converted vegetation height - VGH
vegetation ID - VID
nature bit - NAT */

for (i=0; i<=1749; i++)

{

binuci[i]=tile[i] & 786432;
binvghindex[iJ=tile[i] & 15360,
binvid[i]=tile[i] & 768;
binnat[i}=tilefi] & 128;
binelev[i]=tile[i] & 4292870144
uci[i] = binucifi] >> 18;
vghindex[i] = binvghindex[i] >> 10;
vgh[i]=realvgh[vghindex[i]];
vid[i] = binvid[i] >> 8;

nat[i] = binnat[i] >> 7;

elev[i] = binelev[i] >> 21;

}

/* This program is currently written to run in a stand alone mode. Sensor information
is entered from the keyboard, and target data is read from an array to simulate a
moving target. Inputs sensor location and height */

printf("\nThe Default Sensor Coordinates are xs = 0, zs = 0");
printf("\nand hs = 1\n");

printf("\nDo you wish to Change these values? 1=Yes, 2=No\n");
scanf(" %d",&ans);

if (ans = 1)
{

61

BEGIN:
printf("\nEnter Sensor X Coordinate (X,Y)\n");
scanf("%d,%d",&xs,&ys);
printf("\nEnter Sensor Height\n");
scanf("%d",&ho);
printf("\nAre You Sure? 1=Yes 2=No \n");
scanf(" %d", &ans);
if (ans == 2)
{
goto BEGIN;
}
}

{

else

xs=0;
ho=1;

}

printf("\nPress Spaceball Button 1 to add a window\n");
printf("\nPress Spaceball Button 2 to add another window\n");
printf("\nPress Spaceball Button 3 to delete second window added\n");
printf("\nPress Spaceball Button 4 to delete first window added\n");
printf("\nPress Spaceball Button 5 to move tank\n");

printf("\nPress Spaceball Button 8 to end simulation\n");

/* Array containing target location, this is used to simulate a moving target */

locate[1][1]=2;

locate[1][2]=46;
locate[2][1]=7;

locate[2][2]=46;
locate[3][1]=12;
locate[3][2]=46;
locate[4][1]=17,
locate[4][2]=46;
locate[5][1]=22;

62

locate[5][2]=46;
locate[6][1]=26;
locate[6][2]=44;
locate[7][1]=30;
locate[7][2]=41;
locate[8][1]=33;
locate[8][2]=37;
locate[9][1]=33;
locate[9][2]=32;
locate[10][1]=33;
locate[10][2]=27,;
locate[11][1]=33;
locate[11][2]=22;

/* Calls function terrain() */
terrain();

return;
}

[/ % 3 3k 3k 3k e e ok o 3 3k 3k e o o ok o ok ok e ok ok ok ok sk ok ok ok terraino ******************************/

/¥ This function is WorldToolKit */
terrain()

{

void my_actions();

/* Creates new universe */
WTuniverse_new(WTDISPLAY DEFAULT,WTWINDOW _ DEFAULT);

/* Creates flat terrain */
terrobj=WTterrain_flat(0.0,35,50,0,0,1.0,1.0,0x0f0,0x0e0,1.0);

/* Defines pose of lights, and create light object */
at[0]=25;at[1]=-35.0;at[2]=-5.0;
dir[0]=1.0;dir[1]=1.0;dir[2]=1.0;
mylight=WTlight_new(at,dir,1.0);

/* Creates the object spaceball */
spaceball=WTspaceball_new(COM1);

/* Calls function tree() to get tree information */
tree();

63

/* Creates small building, sensor, and target, and places them on the terrain. Texture
from "build2.rgb" file is applied to the building */

bldg=WTobject_newblock(3,-8,3,1,1);
dp1[X]=29;dp1[Y]=-4;dp1[Z]=29;
WTobject_translate(bldg,dpl, WTF RAME_WORLD);
WTobject_settexmre(bldg,"build2.rgb",FALSE,FALSE);
sensor=WTobject_newblock(.5,.5,.5,1,1)
dp2[X]=0.0;dp2[Y]=-.250;dp2[Z]=0.0;
WTobject_setposition(sensor,dp2);
WTobject_changecolor(sensor,Oxfff,OxfOf);

/* Loads target from external Autodesk dxf file */
tank=WTobject_new("tank.dxf",&modelview,0.01 5,FALSE,FALSE);
WTobject_changecolor(tank,0xfff,0x777);
dp3[X]=35.0;dp3[Y]=-1.0;dp3[Z]=0.0;
rdns=0.0;
WTobject_setposition(tank,dp3);
WTobject_rotate(tank,Y,rdns+PI,WTFRAME_WORLD);
WTobject_setvisibility(tank,FALSE);

/* Prints to screen title headings */
printf("\nxt\tyt\trange\tprent\ttotarea");
printf("\n___ \t \t \t \t \n");

/* Sets universe action function to my_actions() */
WTuniverse_setactions(my_actions);

/* Prepares for simulation to start */
WTuniverse_ready();

/* Scales spaceball sensitivity to the size of the universe */
WTsensor_setsensitivity(spaceball, 5.0 *WTuniverse _getradius());

/* Connects the viewpoint to the spaceball */
WTviewpoint_addsensor(WTuniverse _getviewpoint(),spaceball);

/* Puts some lights on */
WTlight_setambient(0.3);

/* Enters main simulation loop and starts simulation */
WTuniverse go();

/* Deletes universe, simulation loop must be exited to reach this statement */
WTuniverse_delete();

64

return;
3

/*************************** my_actions() ****************************/
/¥ This function determines what actions will occur in the universe */
void my_actions()

{

/* Pressing spaceball button ONE adds an additional window */
if(WTsensor_getmiscdata(spacebal) & WTSPACEBALL_BUTTONI)

{

winl=WTwindow_new(1,500,475,375,WTWINDOW_DEFAULT);
objviewl=WTviewpoint_new();

p1[X]=xs;p1[Y]=-ho;p1[Z]=ys;
pp1[X]=0.0;pp1[Y]=0.0;pp1[Z]=0.0;pp1[W]=1.0;
ppp1[X]=1.0;ppp1[Y]=0.0;ppp1[Z]=1.3;
WTviewpoint_setposition(objviewl1,p1);
WTviewpoint_setorientation(objview1,ppl);
WTviewpoint_setdirection(objviewl,pppl);
WTwindow_setviewpoint(winl,objviewl);

}

/* Pressing spaceball button TWO adds a second additional window */
if(WTsensor_getmiscdata(spacebal)& WTSPACEBALL BUTTON2)

{

win2=WTwindow_new(505,500,500,375,WTWINDOW_DEFAULT);
objview2=WTviewpoint_new();

p2[X]=33.0;p2[Y]=-10.0;p2[Z]}=52.0;
pp2[X]=0.0;pp2[Y]=0.0;pp2[Z]=0.0;pp2[W]=1.0;
ppp2[X]=-1.0;ppp2[Y]=1.0;ppp2[Z]}=-1.2;
WTviewpoint_setposition(objview2,p2);
WTviewpoint_setorientation(objview2,pp2);
WTviewpoint_setdirection(objview2,ppp2);
WTwindow_setviewpoint(win2,0bjview2);

}

65

/* Pressing spaceball button THREE deletes first window added */
if(WTsensor_getmiscdata(spaceball)&WTSPACEBALL_BUTTON3)

{

WTwindow_delete(win2);

}

/* Pressing spaceball button FOUR deletes second window added */
if(WTsensor_getmiscdata(spaceball)& WTSPACEBALL_BUTTON4)

{
WTwindow_delete(winl);

}

/* Pressing spaceball button FIVE makes tank move to next position */
if(WTsensor _getmiscdata(spacebal)& WTSPACEBALL_BUTTONS)

{

/* Calls function tgtxtyt() to get position information */
tgtxtyt();

pt[X] = xt;pt[Y] = -.75;pt[Z] = yt;

/* Logical section to determine when to rotate tank based on position */

if (yt = 46)
{

rdns = 0.0;

}

else if (yt == 44)

{

y_rotate = 15;
rdns = y_rotate * PI / 180;

66

}
else if (yt = 41)

{

y_rotate = 25;
rdns = y_rotate * PI / 180;

}
else if (yt = 37)

{

y_rotate = 20;
rdns = y_rotate * PI / 180;

}
else if (yt == 32)

{

y_rotate = 5;
rdns = y_rotate * PI / 180;

}
else if (yt =27)

{

y_rotate = 0;
rdns = y_rotate * PI / 180;

}
else if (yt =22)

{

y_rotate = 0;
rdns = y_rotate * PI / 180;

67

}

/* Creates a tank from external Autodesk dxf file, changes it’s color, positions it based
on the position data, and rotates it if required */
WTobject_add(tank);
WTobject_setvisibility(tank, TRUE);
WTobject_setposition(tank,pt);
WTobject_rotate(tank,Y,rdns, WTFRAME_WORLD);

/* Calls los() to determine lines of sight to target faces and other calculations */
los();

/* Calls function datatgt() to display target data */
datatgt();

/* Zeros out total area and percent data */

totarea=0;
prent=0.0;

}

/* Pressing spaceball button EIGHT terminates simulation */
if(WTsensor_getmiscdata(spaceball)& WTSPACEBALL_BUTTONS)

{

WTuniverse_stop();

}

return;

}

/***************************** tgtxtyt() ******************************/
/* This function determines the value of xt and yt from array locate[][] */
tgtxtyt()

{
c=c+1;
xt=locate[c][1];
yt=locate[c][2];
return;

}

68

/******************************** lOS() ********************************/

/* This function calculates LOS data */

los()

{

/* Begins loop inputting targets moving locations */
cxt=xt;
Cyt=yt;

range=sqrt((float)pow((xt-xs),2)+(float)pow((yt-ys),2));

/* Calls the function aspect() to determine how much of the target is presented for
possible LOS. Vistgt[][] is the array returned holding the grid location and
information on the faces of the target which may be seen, n = the number of
possible detections and is used for looping the algorithm */

aspect();

/* Loops to check possible LOS for all surfaces presented by target */
r=0;

for (j=1; j<=n; j++)

{

/* Zeros atten for each run and gets target grid & height data for stepping LOS */
atten=0;
attenf=0,
xt=vistgt[j][1];
yt=vistgt[j][2];
ht=vistgt[j][3];

/* Calculates target and observer heights. First ground height must be found by
subtracting vegetation height from absolute height. Then sensor and target heights
above ground are added to obtain absolute elevations of sensor and target */

zs=elev[xs*50+ys]-vgh[xs*50+ys];
zt=elev[xt*50+yt]-vgh[xt*50+yt];
zs=zs+ho;

zt=zt+ht;

/* Determines difference btwn x & y coordinates, and converts from integer to real */
rdx=(xt-xs);
rdy=(yt-ys);
idx=rdx;
idy=rdy;

/* If idy > idx skip to stepping in y direction, else proceed stepping in x direction */
if (idy >= idx)

{

goto YSTEP;

}

{

Y=YS;
dy=(yt-ys)/rdx;

Z=75;
dz=(zt-zs)/rdx;

else

/* This if-else statement ensures moving from sensor to target. Move only from
sensor because dist from sensor will affect attenuation level of any obstructions */

if (xt > xs)

{

/* Apply slope to each step to determine grid passing thru and LOS height in that grid
compare height to ground height, no LOS exists if ground height > LOS helght
z = height of LOS

Ztree = height of vegetation
zdirt = height of the ground */
istart=xs+1;
istop=xt;
ystart=y;

for (ix=istart; ix<=istop; ix++)
{

y=y+dy;

z=z+dz;

ninty();
ztree=elev[ix*50+iy];
zdirt=ztree-vgh[ix*50+iy];

/* Calculate dist from sensor to grid where LOS currently in heading toward target */
dist=sqrt((float)pow((istart-ix),2)+(float)pow((ystart-iy),2));

70

/* Calls function compare() */
compare();

if (nolos != 0)
{
goto FINISH;
}
}
goto CONTINUE;
}

{
istart=xs-1;
istop=xt;
ystart=y;

else

for (ix=istart; ix<=istop; 1x--)
{
y=y-+dy;

z=z+dz;

ninty();

ztree=elev[ix*50+iy];

zdirt=ztree-vgh[ix*50+iy];
dist=sqrt((float)pow((istart-ix),2)+(float)pow((ystart-iy),2));

/* Calls function compare() */
compare();

if (nolos != 0)
{
goto FINISH;

}

71

}
goto CONTINUE;

}
}

/* This section is used if stepping in y direction and same as stepping in x direction */
YSTEP:

X=XS;
dx=(xt-xs)/rdy;
Z=Z5;

dz=(zt-zs)/rdy;

if (yt > ys)
{
istart=ys+1;
istop=yt;
xstart=x;
for (iy=istart; iy<=istop; iy++)
{

x=x+dx;

z=z+dz;

nintx();

ztree=elev[ix*50+iy];

zdirt=ztree-vgh[ix*50+iy];
dist=sqrt((float)pow((xstart-ix),2)+(float)pow((istart-iy),2));

/* Calls function compare() */
compare();

if (nolos != 0)

{
goto FINISH;

72

3
}
goto CONTINUE;
}
{

else

istart=ys-1;
istop=yt;
xstart=x;

for (iy=istart; iy<=istop; iy--)
{

x=x+dx;

z=zt+dz;

nintx();

ztree=elev[ix*50+1y];

zdirt=ztree-vgh[ix*50+iy];
dist=sqrt((float)pow((xstart-ix),2)+(float)pow((istart-iy),2));

/* Calls function compare() */
compare();

if (nolos != 0)

{
goto FINISH;

}
}
goto CONTINUE;

}

/* At this point LOS has atten = 0 or a number. Apply this attenuation factor to proj
area of target to reduce area of visibility. Proj area is determined based on surface
direction of face in question. This value is 1 for a vertical surface and 2 for a
horizontal surface. This value is stored in vistgt[][] array which describes target */

if (vistgt[j][4] = 0)

{
aproj=rdy/sqrt(pow(rdy,2)+pow(rdx,2));
}
else
{
aproj=rdx/sqrt(pow(rdy,2)+pow(rdx,2));
}
/* Sees if there is any attenuation to be applied, if so apply it */
if (atten == 0)
{
visaproj=aproj;
}
else
{
visaproj=(1-atten)*aproj;
}

/* Sums total visible area presented by target */
totarea=totarea+visaproj;

/* Zeros aproj and visaproj for next LOS */
aproj=0;
visaproj=0;
r=r+1;
FINISH:

nolos=0;

74

}

return;
}

/****************************** aspecto ******************************/

/* This subroutine assigns target grid locations based on central input location. It then
uses sensor and target locations to determine which faces of target are ideally visible
to sensor. Faces which are visible have there information stored in array vistgt[][]
for return to main program. The number of faces ideally visible are also returned.
Assign target data to array tgt[][] based on center grid of target 3x3 each
exterior vertical face of target is represented */

aspect()

{
tgt[1][1]=xt-1;
tgt[1][2}=yt-2;
tgt[1][4]=0;
tgt[2][1]=xt-2;

tgt[2][2]=yt-1;
tgt[2][4]=1;
tgt{3][1}=xt-2;
tgt{3][2]=yt;
tgt{3][4]=1;
tgt[4][1]=xt-2;
tgt[4][2]=yt+1;
tgt[4][4]=1;
tgt[5][1]=xt-1;
tgt[5][2]=yt+2;
tgt[5][4]=0;
tgt[6][1]=xt;
tgt{6][2]=yt+2;
tgt[6]{4]=0;
tgt[7][1]=xt+1; -
tgt[7][2]=yt+2;
tgt[7][4]=0;
tet[8][1]=xt+2;
tgt[8][2]=yt+1;
tgt[8]{4]=1;
tgt[9][1}=xt+2;
tgt[9][2]=yt;
tgt[9][4]=1;
tgt[10][1}=xt+2;

tgt[10][2]=yt-1;
tgt[10][4]=1;
tgt[11][1]=xt+1;
tgt[11][2]=yt-2;
tgt[11][4]=0;
tgt[12][1]=xt;
tgt[12]{2]=yt-2;
tgt[12][4]=0;
tgt[13][1]=xt;
tgt[13][2]=yt-1;
tgt[13][4]=0;
tgt[14][1]=xt-1;
tgt[14][2]=yt;
tgt[14][4]=1;
tgt[15][1]=xt;
tgt[15][2]=yt+1;
tgt[15][4]=0;
tgt[16][1]=xt+1;
tgt[16][2]=yt;
tgt[16][4]=1;

/* Assigns target heights, in tgt[1] *
for (=1; j<=12; j++)

{
tetfjl[31=1;
}
for (j=13; j<=16; j++)
{
tgtjl[3]=2;
}

/* Establishes bounds of the target */
xmax=xt+1;
xmin=xt-1;
ymax=yt+1;
ymin=yt-1;

/* Determines visible sectors of target */
if ((xs <= xmax) && (xs >= xmin))

{
if (ys > ymax)

{

/* Sensor is directly above target grids, upper faces */
for (7=1; j<=4; j++)

{
vistgt[1][j]=tgt[5][j];
vistgt[2][j]=tgt[6][j];
vistgt[3][j1=tgt[7][];
vistgt[4][j]=tgt[15][j];
n=4;

/* Allows for skewed view of a top block side */
if (xs < xt)

{
vistgt[5][j]=tgt[14][j];

n=5;
}
if (xs > xt)
{
vistgt[5][j]=tgt[16][j];

n=35;
}

}
goto END;

}

77

else

{

/* If the sensor is vertically in line with target grids and it is not above target it must
be below it, therefore it sees lower faces */
for (j=1; j<=4; j++)
{
vistt[1][j}=tet[1];
V}stgt[2][_!]=tgt[12][!];
vistgt[3][j]=tgt[11][j];
vistgt[4][j]=tgt[131[];
n=4;

/* Allows for skewed view of a top block side */
if (xs < xt)

{
vistgt[S][j]=tgt[14][j];

n=5;
}

if (xs > xt)
{
vistgt[5][j]=tgt[16][j];

n=5;

}

}
goto END;

}

}

if (xs < xmin)

78

{
if ((ys >= ymin) && (ys <= ymax))

{

/* Sensor is horizontally aligned with target grids and to left of target, therefore it sees

left side faces */
for (j=1; j<=4, j++)

{
vistgt[1][j1=tgt2][i];
vistgt[2][j]=tgt{31[];
vistgt[3][j]=tgt[4][];
Viszgt[4]D]=tgt[14]U];
n=4;

/* Allows for skewed view of top block side */
if (ys < yt)

{
vistgt[5][j]=tgt[13][];

n=5;
}
if (ys > yt)
{
vistgt[S][j1=tgt[15][j];

n=5;
}

}
goto END;

}
if (ys < ymin)

79

{

/* Sensor is to left and below target, all of left side and lower faces seen */
for =1; j<=4; j++)

{

vistgt[1][;}=tgt[1][j];
vistgt[2][j]=tgt[2][j];
vistgt[3][j]=tgt[3][j];
vistgt[4][j]=tgt[4][j];
vistgt[S][j]=tgt[12][j];
vistgt[6][j1=tgt[11][j];
vistgt[7][j]=tgt[13]j];
vistgt[8][j]=tgt[14][j];

n=8§;

}
goto END;

}

if (ys > ymax)

{

/* Sensor is to left side and above target, all of left side and upper faces seen */
for (j=1; j<=4; j++)

{

vistgt{1][j1=tgt[2][j];
vistgt[2][j]=tgt[3][j];
vistgt[3][]=tgt[4][j];
vistgt[4][j]=tgt[5][j];
vistgt[S][j1=tgt[51[j];
vistgt[6][j1=tgt[7][j];
vistgt[7][j]=tgt[14][j];
vistgt[8][j1=tgt[15]j];

n=8§;

}

80

goto END;

}
}

/* Sensor is right of target */
if ((ys >= ymin) && (ys <= ymax))

{

/* Sensor horizontally aligned w/target and right of target, therefore right faces seen */
for (j=1; j<=4; j++)
{
vistgt[1][j1=tgt[8] l;
v@stgt[2]D_]=Tgt[9][l]_;
vistgt[3][j]=tgt[10][j];
vistgt[4][j]=tgt[16][j];

n=4,

/* Allows a skewed view of a top side */
if (ys <yt)

{
vistgt[S][j]=tgt[13][j];

n=5;
}
if (ys > yt)
{
vistgt[S][j]=tgt[15][j];

n=>3;

} .

3
goto END;

}

if (ys < ymin)

{

/* Sensor is right of and below target, all right and lower faces seen */
for (j=1; j<=4; j+)

{

vistgt[1][j]=tgt[8][j];
vistgt[2][j=tgt[91[j];
vistgt[3][j]=tgt[10][j];
vistgt[4][j]=tgt[1][j];
vistgt[5][]=tet[12][j];
vistgt[6][j]=tgt[11][j];
vistgt[7][j]=tgt[13]j];
vistgt[8][j]=tgt[16][i];

n=§;

}
goto END;

}

if (ys > ymax)

{

/* Sensor is right and above target, all right and upper faces seen */
for (=1; j<=4; j++)

{

vistgt[1][j]=tgt[8][j];
vistgt[2][j]=tgt[9]j];
vistgt[3][j]=tgt[10][j];
vistgt[4][j]1=tgt[5][j];
vistgt[S][j]=tgt[6][j];
vistgt[6][j1=tgt[7][j];
vistgt[7][j1=tgt[16][j];
vistgt[8][j1=tgt[15][j];

n=3§;

82

}
goto END;

}
END:

return;
}

[3 ek ke sk ook o sk ok o ok sk ok ok ok sk ok ok s ok ok sk ok ke sk ok ok ok nintXO *******************************/

/* This function round up or down to the nearest integer for ix */
nintx()

{
ix=floor(x);
zx=fabs(x-ix);

if (zx >=.5)
{
ix=ceil(x);
}

else
{

ix=floor(x);

return;
}

/******************************* ninty() *******************************/
/* This function round up or down to the nearest integer for iy */

ninty()
{

iy=tfloor(y);
zy=fabs(y-1y);

if (zy >= .5)
{

iy=ceil(y);

}

else
{
iy=floor(y);
}

return;

}

[k s s ok ok ke s ok ok ok ok s ok ok ok ok ok o ok ok o ok ok o ok o ok compare() *****************************/

/* This function compares LOS data to terrain data to see if LOS is obstructed */
compare()

{

/* Compares LOS height to ground height */
if (z < zdirt)

{

nolos=1;

}

else if (z < ztree)

{

/* The following determine attenuation due to vegetation. If feature is 200 m away
then appears as solid object, distance arbitrarily selected. Checks UCI if object has
height but no UCI assume to be trunk of object/man made structure, LOS blocked */

if (uci[ix*50+iy] = 0)

{

84

}

else if (z > uci[ix*50+iy])

{

/* Checks nature bit, structures block LOS. Manmade objects have a nature bit of 0 */
if (nat[ix*50+iy] == 0)

{
nolos=3;

}

/* If program passes above test then obstruction is vegetation and any other parts of
tree will be assumed as foliage. Current assumption is foliage of 1 meter thickness
has an attenuation of 30%. This value is modified as function of distance until
modified value reaches an attenuation of 100% at terminal distance, 200 meters. At
200 meters all objects appear solid. It is assumed the modification factor is linear */

if (dist > 200)

{

nolos=4;

}

{
attenf=denfol*(1+2.33*dist/200);
}

}

/* Allows for sensor hiding behind or in foliage to see through w/out attenuation */
if (dist <= 1)

{

attenf=0;

else

85

/* Sums attenuations */
atten=atten+attenf;

/* If total attenuation exceeds 95%, LOS is blocked */
if (atten > .95)

{

nolos=5;

return;
}

[/ % e ok ok ok ok ok ok ok sk sk ok ok sk ok ok ok k ok ok ok sk ok ok ok -k ok datatgt() ******************************/

/* This function displays to screen: range, % of target faces visible, and total area of
target faces visible */
datatgt()

{
prent=floor((r / n)*100);

printf("\n%d\t%d\t%3.2f\t%d\t%3.2f\n",cxt,cyt,range,prcnt,totarea);

return;

}

/******************************* treeo *******************************/

/* This function creates trees & places them on terrain from info in "tree.dat" */
static void tree()

{

/* Declare variables */
int row;
float rad,x,z;

/* Opens file "tree.dat" and reads dimensional data */

fpl=fopen("tree.dat","r");
for (row=0; row<7; row++)

{

86

fscanf(fpl," %f %f %f\n",&mdata[row][0],&mdata[row][1],&mdata[row][2]);

/* Defines variables rad, x, z */
rad=mdata[row][0];x=mdata[row][1];z=mdata[row][2];

/* Defines cube as new sphere and cyl as a new cylinder attaches them together.
Texture from "grass.rgb” and "wood.rgb" is applied to the tree trunk and leaves */

factors[X]=factors[Z]=.50;factors[Y]=1.25;
sphere = WTobject_newsphere(rad,5,5,1,1,1);
WTobject_stretch(sphere,factors,p, WIFRAME_WORLD);
cyl = WTobject_newcylinder(rad/1.25,rad/5,4,1,1,1);
dp4[X]=0;dp4[Y]=-(1.3*rad);dp4[Z]=0;
WTobject_translate(sphere,dp4, WTFRAME_WORLD);
WTobject_attach(sphere,cyl);
WTobject_add(sphere);
dp5[X]=x;dp5[Y]=-rad/4;dp5[Z]=z,
WTobject_translate(sphere,dp5, WTFRAME_WORLD);
WTobject_settexture(sphere,"grass.rgb",FALSE,FALSE);
WTobject_settexture(cyl,"wood.rgb",FALSE,FALSE);

}

fclose(fpl);
return;

87

88

APPENDIX H. FLOWCHART PROG2.C

START

Header
Operations

CALL
Function = TERRAIN()
TERRAIN

CALL
Function L MY_ACTIONS()
MY_ACTIONS

CALL CALL
Function Function o TGTPOSN()
TREE TGTPOSN

CALL
Com D || % [
LOS

v

89

CALL
Function
DATATGT

CALL
Function
ASPECT

v

CALL
Function
NINTX or
NINTY

v

CALL
Function
COMPARE

RETURN

90

APPENDIX I. PROGRAM PROG2.C
/* PROGRAM PROG2.C */

/**/
/* This program calculates Line Of Sight (LOS) data and visualizes a target moving*/
/* through a 35x50 grid using a database of Pegasus numbers and is designed to ~ */
/* incorporate attenuation by vegetation. The main section of this program calls */
/* function terrain() which is used to start WorldToolKit and create a universe */
/* where there is a flat terrain with trees and a building located on it. The trees and*/
/* building are represented as close approximations to real objects. The simulation */
/* has the target moving along a path behind the trees and buildings. Function */
/* terrain() calls function les() which is used to calculate target data. */
/**/
/* Standard C and WorldToolKit header files */

#include <stdio.h>

#include <math.h>

#include"wt.h"

#include"wt.p"

/* Defines a pointer spaceball to structure type WTsensor */
static WTsensor *spaceball=NULL,;
static WTsensor *mouse=NULL;

/* Calls function tree() */
static void tree();

/* Defines windows, viewpoints, nodes, and paths */
static WTwindow *winl, *win2, *win3;
static WTviewpoint *objviewl, *objview2, *objview3;

/* Defines objects */
WTobject *bldg, *copy, *cyl, *original, *sensor, *sphere, *tank, *terrobj;
WTobject *nodeobyj;

/* Defines path */
static WTpath *tnkpth;

/* Defines pointers to WTp3, WTq, and WTpq structures */
WTp3 at,dpl,dp2,dp3,dp4.dp5,dir,factors,p,pl,p2,ppp1,pPp2,pP.pt;
WTq ppl,pp2;

WTpq modelview;

/* Defines light object to be a pointer to type WTlight */
WTlight *mylight;

91

/* Initialize arrays and declares variables */

int ans,c,cxt,cyt,ho,ht,i ix,iy,idx,idy,istart,istop,j,n,nmbr,nolos,prcnt,win,wdow,xs,xt;

int xmax,xmin,xstart,ys,yt,ymax,ymin,ystart,zs,zt,zdirt,ztree,binelev[1750],binnat[1750];
int binuci[1750],binvghindex[1750],binvid[1750],elev[1750],nat[1750],realvgh[10];

int tgt[17][5],tile[1750]uci[1750],vgh[1750],vid[1750],vghindex[1750],vistgt[9][9];
float aproj,atten,attenf,dx,dy,dz,denfol,dist,r,rad,rdx,rdy,row,rdns,range;

float totarea,visaproj,x,y,y_rotate,z,zx,z,mdata[7][3];

/* Standard C file pointers */
FILE *fp;
FILE *fpl;

main()

{

/* Reads database information into array from data file "btlfld_terr.dat" */
fp=fopen("btlfld_terr.dat","r");
for (i=0; i<=1749; i++)

{
fscanf(fp," %d", &tile[i]);

}
fclose(fp);

/* Assigns 1 meter of foliage an attenuation of 30% of the LOS */
denfol=0.3;

/* The vegetation height from pegasus has values of 0-15, each of these values
represents a particular height or range of heights. The following is used to correlate
the vgh value to a meaningful height */

realvgh[0]=0;
realvgh[1]=0;
realvgh[2]=1;
realvgh[3]=2;
realvgh[4]=3;
realvgh[5]=4;
realvgh[6]=5;
realvgh[7]=8;
realvgh[8]=10;
realvgh[9]=15;

92

realvgh[10]=20;
realvgh[11]=25;
realvgh[12]=30;
realvgh[13]=35;
realvgh[14]=40;
realvgh[15]=47,

/* Once the database for the grid desired has been read into an array, the components
of information are extracted from the 32 bit number using the AND and SHIFT
functions. The groups of information of use in the program are placed in their own
arrays for rapid recall during calculations as follows:

elevation of highest point in grid - ELEV
under cover index - UCI
converted vegetation height - VGH
vegetation ID - VID
nature bit - NAT */

for (i=0; i<=1749; i++)

{

binuci[i]=tile[i] & 786432;
binvghindex[i]=tile[i] & 15360;
binvid[i]=tile[i] & 768;
binnat[i]=tile[i] & 128;
binelev[i]=tile[i] & 4292870144,
ucifi] = binuci[i] >> 18;
vghindex[i] = binvghindex[i] >> 10;
vgh[i]=realvgh[vghindex[i]];
vid[i] = binvid[i] >> 8;

nat[i] = binnat[i] >> 7;

elev[i] = binelev[i] >> 21;

}

/* This program is currently written to run in a stand alone mode. Sensor information
has a default value, but can be changed by answering prompts from the keyboard.
Accepts default values or input sensor location and height */

printf("\nThe Default Sensor Coordinates are xs = 0, zs = 0");

printf("\nand hs = 1\n");

printf("\nDo you wish to Change these values? 1=Yes, 2=No\n");

scanf(" %d",&ans);

if (ans = 1)

{
BEGIN:

printf("\nEnter Sensor X Coordinate (X,Y)\n");
scanf("%d,%d",&xs,&ys);

printf("\nEnter Sensor Height\n");
scanf("%d",&ho);

printf("\nAre You Sure? 1=Yes 2=No \n");
scanf(" %d", &ans);

if (ans = 2)
{
goto BEGIN;
}

}

else
{
xs=0;
ys=0;
ho=1;
}

printf("\nPress Spaceball Button 1 to add a window\n");
printf("\nPress Spaceball Button 2 to add another window\n");
printf("\nPress Spaceball Button 3 to delete first window added\n");
printf("\nPress Spaceball Button 4 to delete second window added\n");
printf("\nPress Spaceball Button 5 to start tank motion\n");
printf("\nPress Spaceball Button 6 to replay simulation\n");
printf("\nPress Spaceball Button 8 to end simulation\n");

/* Calls function terrain() */
terrain();

return;

}

94

/****************************** terraino ******************************/

/* This function is WorldToolKit */
terrain()

{

void my_actions();

/* Creates new universe */
WTunjverse_new(WTDISPLAY_DEFAULT,WTWINDOW_DEFAULT);

/* Creates the object terrobj */
terrobj=WTterrain_{flat(0.0,35,50,0,0,1.0,1.0,0x010,0x0e0,1.0);

/* Defines pose of lights, and create light object */
at[0]=25;at[1]=-35.0;at[2]=-5.0;
dir[0]=1.0;dir[1]=1.0;dir[2]=1.0;
mylight=WTlight_new(at,dir,1.0);

/* Creates the object spaceball or mouse */
spaceball=WTspaceball_new(COM1);

/* Calls function tree() to get tree information */
tree();

/* Creates small building, sensor, and target, and places them on the terrain */
bldg=WTobject_newblock(3,-8,3,1,1);
dp1[X]=29;dp1[Y]=-4;dp1[Z]=29;

WTobject_translate(bldg,dpl, WTFRAME_WORLD);
sensor=WTobject_newblock(.5,.5,.5,1,1);
dp2[X]=0.0;dp2[Y]=-.250;dp2[Z]=0.0;
WTobject_setposition(sensor,dp2);
WTobject_changecolor(sensor,0xfff,0xf0f);

/* Loads tank from external Autodesk dxf file */
tank=WTobject_new("tank180.dxf",&modelview,0.015,FALSE,FALSE);
WTobject_changecolor(tank,0xfff,0x777);
dp3[X]=15.0;dp3[Y]=5.0;dp3[Z]=25.0;
rdns=0.0;

WTobject_setposition(tank,dp3);
WTobject_rotate(tank,Y,rdns+Pl, WTFRAME_WORLD);

/* Tank path is loaded from external file */

nodeobj=WTobject_newblock(.1,.1,.1,1,1);
tnkpth=WTpath_load("tank.pth",nodeobj);

95

/* Prints to screen title headings */
printf("\nxt\tyt\trange\tprent\ttotarea");
printf("\n__ \t \t \t \t \n");

/* Sets universe action function to my_actions() */
WTuniverse_setactions(my_actions);

/* Prepares for simulation to start */
WTuniverse_ready();

/* Scales spaceball or mouse sensitivity to the size of the universe */
WTsensor_setsensitivity(spaceball, 5.0 *WTuniverse_getradius());

/* Connects the viewpoint to the spaceball or mouse */
WTviewpoint_addsensor(WTuniverse _getviewpoint(),spaceball);

/* Puts some lights on */
WTlight_setambient(0.3);

/* Enters main simulation loop and starts simulation */
WTuniverse go();

/* Deletes universe, simulation loop must be exited to reach this statement */
WTuniverse_delete();

return;

}

/*************************** my_actionso ****************************/

/* This function determines what actions will occur in the universe */
void my_actions()

{

/* Pressing spaceball button ONE adds an additional window */
if(WTsensor _getmiscdata(spaceball)& WTSPACEBALL BUTTONI)

{

winl=WTwindow_new(1,500,475,375, WTWINDOW_DEFAULT);
objviewl=WTviewpoint_new();

p1[X]=xs;p1[Y]=-ho;p1{Z]=ys;
pp1[X]=0.0;pp1[Y]}=0.0;pp1[Z]}=0.0;pp1[W]=1.0;
ppp1[X]=1.0;ppp1[Y]=0.0;ppp1[Z]=1.3;

96

WTviewpoint_setposition(objviewl,pl);
WTviewpoint_setorientation(objview1,ppl);
WTviewpoint_setdirection(objview1,pppl);
WTwindow_setviewpoint(winl,objviewl);

}

/* Pressing spaceball button TWO adds a second additional window */
if(WTsensor_getmiscdata(spacebal)& WTSPACEBALL BUTTON2)

{

win2=WTwindow_new(505,500,500,375,WTWINDOW_DEFAULT);
objview2=WTviewpoint_new();
p2[X]=33.0;p2[Y]=-10.0;p2[Z]=52.0;
pp2[X]=0.0;pp2[Y]=0.0;pp2[Z]=0.0;pp2[W]=1.0;
ppp2[X]}=-1.0;ppp2[Y]=1.0;ppp2[Z]=-1.2;
WTviewpoint_setposition(objview2,p2);
WTviewpoint_setorientation(objview2,pp2);
WTviewpoint_setdirection(objview2,ppp2);
WTwindow_setviewpoint(win2,objview?2);
}
/* Pressing spaceball button THREE deletes first window added */
1f(WTsensor_getmiscdata(spacebal)& WTSPACEBALL BUTTONS3)

{
WTwindow_delete(win2);

}

/* Pressing spaceball button FOUR deletes second window added */
if(WTsensor_getmiscdata(spacebal)& WTSPACEBALL BUTTON4)

{
WTwindow_delete(winl);

}

/* Pressing spaceball button FIVE starts tank motion along path */
if(WTsensor_getmiscdata(spacebal)& WTSPACEBALL_BUTTONS)

97

{

WTpath_setobj ect(tnkpth,tank);
WTpath _play(tnkpth);
WTpath_record(tnkpth);

}

/* Pressing spaceball button SIX restarts tank motion */
if(WTsensor_getmiscdata(spaceball)&WTSPACEBALL__BUTTON6)

{

WTpath_stop(tnkpth);
WTpath_rewind(tnkpth);
WTpath _play(tnkpth);

}

/* Based on tank position, function tgtposn() called */
WTobject_getposition(tank,pp);

if (pp[X] = 2)
{

tgtposn();

}

if (pp[X] = 7)
{

tgtposn();

}

if (pp[X] = 12)
{

tgtposn();

98

}

if (pp[X] = 17)
{

tgtposn();

}

if (pp[X] = 22)
{

tgtposn();

}

if (pp[X] = 26) |
{

tgtposn();

}

if (pp[X] = 30)
{

tgtposn();

}

if ((pp[X] = 33) && (pp[Z] = 37))
{

tgtposn();

}

if ((pp[X] == 33) && (pp[Z] = 32))

99

tgtposn();

}

if ((pp[X] = 33) && (pp[Z] == 27))
{

tgtposn();

}

if (pp[X] = 33) && (pp[Z] = 22))
{

tgtposn();

}

/* Pressing spaceball button EIGHT terminates simulation */
if(WTsensor_getmiscdata(spacebal1)&WTSPACEBALL_BUTTON8)

{

WTuniverse_stop();

}

return;
}

/***************************** tgtposn() ******************************/

/* This function calls les() and datatgt(), receives value of xt and zt from
WTobject_getposition, and displays target data to screen */

tgtposn()
{
xt=pp[X];yt=pp[Z];

100

/* Calls function los() to determine LOS to target faces and other calculations */
los();

/* Calls function datatgt() to display target data */
datatgt();

/* Zeros out total area and percent data */
totarea=0;
prent=0.0;

return;
}

/******************************** lOSO ********************************/

/* This function calculates LOS data */

los()

{

/* Begins loop inputting targets moving locations */
cxt=xt;
cyt=yt;

range=sqrt((float)pow((xt-xs),2)+(float)pow((yt-ys),2));

/* Calls the function aspect() to determine how much of the target is presented for
possible LOS. Vistgt[][] is the array returned holding the grid location and
information on the faces of the target which may be seen, n = the number of
possible detections and is used for looping the algorithm */

aspect();

/* Loops to check possible LOS for all surfaces presented by target */
r=0;

for (=1; j<=n; j++)
{

/* Zeros atten for each run and gets target grid height data for stepping LOS */
atten=0;
attenf=0,
xt=vistgt[j][1];
yt=vistgt[j][2];
ht=vistgt[j1[3];

101

/* Calculates target and observer heights. First ground height must be found by
subtracting vegetation height from absolute height. Then sensor and target heights
above ground are added to obtain absolute elevations of sensor and target */

zs=elev[xs*50+ys]-vgh[xs*50+ys];
zt=elev[xt*50+yt]-vgh[xt*50+yt];
zs=zs+ho;

zt=zt+ht;

/* Determines difference btwn x & y coordinates and convert from integer real */
rdx=(xt-xs);
rdy=(yt-ys);
idx=rdx;
idy=rdy;

/* If idy > idx skip to stepping in y direction, else proceed in x direction */
if (idy >= idx)

{
goto YSTEP;
}
{

else

Y=ys;
dy=(yt-ys)/rdx;
Z=zs;
dz=(zt-zs)/rdx;

/* This if-else statement ensures moving from sensor to target. Move only from
sensor because dist from sensor will affect attenuation level of any obstructions */
if (xt > xs)

{ -

/* Apply slope to each step to determine grid passing thru and LOS height in that grid
compare height to ground height, no LOS will exist if ground height > LOS height:
z = height of LOS

Ztree = height of vegetation
zdirt = height of the ground */
istart=xs+1;
istop=xt;
ystart=y;

102

for (ix=istart; ix<=istop; ix++)
{

y=y+dy;

z=z+dz;

ninty();
ztree=elev[ix*50+iy];
zdirt=ztree-vgh[ix*50-+iy];

/* Calculate dist from sensor to grid where LOS currently in heading toward target */
dist=sqrt((float)pow((istart-ix),2)+(float)pow((ystart-iy),2));

/* Calls function compare() */
compare();

if (nolos != 0)
{
goto FINISH;
}
}
goto CONTINUE;
}
{

istart=xs-1;
istop=xt;

ystart=y;

else

for (ix=istart; ix<=istop; ix--)
{
y=y+dy;

z=z+dz;

ninty();
ztree=elev[ix*50+iy];

103

zdirt=ztree-vgh[ix*50+iy];
dist=sqrt((ﬂoat)pow((istart-ix),2)+(ﬂoat)pow((ystart-iy),2));

/* Calls function compare() */
compare();

if (nolos != 0)
{
goto FINISH;
}
}
goto CONTINUE;
}
}

/* This section is used if stepping in y direction and same as stepping in x direction */
YSTEP:

X=XS;
dx=(xt-xs)/rdy;
Z=7s;
dz=(zt-zs)/rdy;

if (yt > ys)
{
istart=ys+1;
istop=yt;
xstart=x;
for (iy=istart; iy<=istop; iy++)
{

x=x+dx;
z=z+dz;

104

nintx();

ztree=elev[ix*50+iy];

zdirt=ztree-vgh[ix*50+iy];
dist=sqrt((float)pow((xstart-ix),2)+(float)pow((istart-iy),2));

/* Calls function compare() */
compare();

if (nolos != 0)
{
goto FINISH;
}
}
goto CONTINUE;
}
{
istart=ys-1;

istop=yt;
xstart=x;

else

for (iy=istart; iy<=istop; iy--)
{

x=x+dx;

z=z+dz;

nintx();

ztree=elev[ix*50+iy];

zdirt=ztree-vgh[ix*50+iy];
dist=sqrt((float)pow((xstart-ix),2)+(float)pow((istart-iy),2));

/* Calls function compare() */
compare();

if (nolos != 0)

{
goto FINISH;
}
}
goto CONTINUE;
}
CONTINUE:
/* At this point LOS has atten = 0 or a number. Apply this attenuation factor to proj
area of target to reduce area of visibility. Proj area is determined based on surface

direction of face in question. This value is 1 for a vertical surface and 2 for a
horizontal surface. This value is stored in array vistgt[][] which describes target */

if (vistgt[j][4] = 0)
{
aproj=rdy/sqrt(pow(rdy,2)+p0w(rdx,2));
}

else

{

aproj=rdx/sqrt(pow(rdy,2)+pow(rdx,2));
}

/* Sees if there is any attenuation to be applied, if so apply it */
if (atten == 0)

{
visaproj=aproj;
}
{

else

106

visaproj=(1-atten)*aproj;

}

/* Sums total visible area presented by target */
totarea=totarea+visaproj;

/* Zeros aproj and visaproj for next LOS */

aproj=0;
visaproj=0;
r=r+l;

FINISH:
nolos=0;

}

return;
}

[/ e sk ok 3 3k o e e o ok o ok e ok o e ke ke ok o ok ok ok ok ke sk ok aspecto ******************************/

/* This subroutine assigns target grid locations based on central input location. It then
uses sensor and target locations to determine which faces of target are ideally visible
to sensor. Faces which are visible have there information stored in array vistgt[][]
for return to main program. The number of faces ideally visible are also returned.
Assign target data to array tgt[][] based on center grid of target 3x3 each exterior
vertical face of target is represented */

aspect()

{

tgt[1]{1]=xt-1;
tgt{1][2]=yt-2;
tgt[1][4]=0;
tgt[2][1]=xt-2;
tgt[2][2]=yt-1;
tgt[2][4]=1;
tgt[3][1]=xt-2;
tgt[3][2]=vyt;
tgt[3][4]=1;
tgt[4][1]=xt-2;
tgt[4][2]=yt+1;

107

tgt[4][4]=1;
tgt[5][{1]=xt-1;
tgt[5][2]=yt+2;
tgt[5][4]=0;
tgt[6][1]=xt;
tgt[6][2]=yt+2;
tgt[6][4]=0;
tgt[7][1]=xt+1;
tgt[7][2])=yt+2;
tgt[7][4]=0;
tgt[8][1]=xt+2;
tgt[8][2]=yt+1;
tgt[8][4]=1;
tgt[9][1]=xt+2;
tgt[9][2]=yt;
tgt[9][4]=1;
tgt[10][1]=xt+2;
tgt[10][2]=yt-1;
tgt[10][4]=1;
tgt[11][1]=xt+1;
tgt{11][2]=yt-2;
tgt[11]{4]=0;
tgt[12][1]=xt;
tgt[12][2]=yt-2;
tgt{12][4]=0;
tgt[13][1]=xt;
tgt[13][2]=yt-1;
tgt[13][4]=0;
tgt[14][1]}=xt-1;
tgt[14][2]=yt;
tgt[14][4]=1;
tgt[15][1]=xt;
tgt[15][2]=yt+1;
tgt[15][4]=0;
tgt[16][1]=xt+1;
tgt[16][2]=yt;
tgt[16][4]=1;

/* Assigns target heights, in tgt[1N1*
for (j=1; j<=12; j++)

{

tgt[j1[3]=1;

108

3
for (j=13; j<=16; j++)
{
tgt][31=2;
}

/* Establishs bounds of the target */
xmax=xt+1;
xmin=xt-1;
ymax=yt+1;
ymin=yt-1;

/* Determine visible sectors of target */
if ((xs <= xmax) && (xs >= xmin))

{
if (ys > ymax)
{

/* Sensor is directly above target grids, upper faces */
for (j=1; j<=4; j++)

{
vistgt[1][j]=tgt[5][];
vistgt[2][j]=tgt[6][j];
vistgt[3][j}=tet[7][i];
vistgt[4][j]=tgt[15][j];
n=4;"

/* Allows for skewed view of a top block side */
if (xs < xt)

1
vistgt[5][j]=tgt[14][];

n=5;

109

}

if (xs > xt)
{
vistgt[5][j1=tgt[16][j];

n=5;

}

}
goto END;

}

{

/* If the sensor is vertically in line with target grids and it is not above target it must
be below it, therefore it sees lower faces */

else

for (=1; j<=4; j++)
{
vistgt[1][j]=tgt[1][j);
vistgt[2][j]=tgt[12][j];
vistgt[3][j]=tgt[11][j];
vistgt[4][j]=tgt[13][j];

n=4;

/* Allows for skewed view of a top block side */
if (xs < xt)

{
vistgt[S][j]=tgt[14](j];

n=5;
}

if (xs > xt)

110

{
vistgt[5][i]=tet[16][j];

n=5;

if (xs < xmin)

{
if ((ys >= ymin) && (ys <= ymax))

{

/* Sensor is horizontally aligned with target grids and to left of target, therefore it sees

left side faces */
for (=1; j<=4; j++)

{

vistgt[1][j]1=tgt[2](j];
vistgt[2][j]=tgt[3]1(];
vistgt[3][j]1=tgt[4][];
vistgt[4][j]=tgt[14][}];
n=4;

/* Allows for skewed view of top block side */
if (ys < yt)

{
vistgt[51[1=tgt[131[];

n=>5;

}

if (ys > yt)
{

vistgt[S]i]=tgt[15][];

n=5;
}

}
goto END;

}

if (ys < ymin)

{

/* Sensor is to left and below target, all of left side and lower faces seen */
for (=1; j<=4; j++)

{

vistgt[1][j]=tgt[1][j];
vistgt[2][j]=tgt[2]j];
vistgt[3][j]1=tgt[3][j];
vistgt[4][j]=tgt[4](j];
vistgt[S][j]=tgt[12][j];
vistgt[6][j]=tgt[11]j];
vistgt[7][j]=tgt[13]j];
vistgt[8][j1=tgt[14]j];

n=§;

}
goto END;

}

if (ys > ymax)

{

112

/* Sensor is to left side and above target, all of left side and upper faces seen */
for (=1; j<=4; j++)

{

vistgt[1][j]=tgt[2][];
vistgt[2][j}=tgt[3][];
vistgt[3][j]=tet[4][];
vistgt[4][j]=tet[5]0];
vistgt[5][j]=tgt[5][];
vistgt[6][j]=tet[7](];
vistgt[7][j]=tgt[14][j];
vistgt[8][j]=tgt[15]j];

n=8;

}
goto END;

}

}

/* Sensor is right of target */
if ((ys >= ymin) && (ys <= ymax))

{

/* Sensor horizontally aligned w/target and right of target, therefore right faces seen */
for (j=1; j<=4; j++)
{
vistgt[1][j}=tgt[8][i];
vistgt[2][j]=tgt[9][i];
vistgt[3][j]=tgt[10][j];
vistgt[4][j]=tgt[16][i];
n=4;

/* Allows a skewed view of a top side */
if (ys <yt)

{

113

vistgt[5][j1=tgt[13][j];

n=5;
}

if (ys > yt)
{
vistgt[5][i]=tet[15][j];

n=5;
}

}
goto END;

}

if (ys < ymin)

{

/* Sensor is right of and below target, all right and lower faces seen */
for (j=1; j<=4; j++)

{

vistgt[1][j]=tgt[8][;];
vistgt[2][j]=tgt[9][;];
vistgt[3][j]=tgt[10][j];
vistgt[4][j]=tgt[1][j];
vistgt[S][j]=tgt[12][j];
vistgt[6][j]=tgt[11][j];
vistgt[7][i]=tet[13][j];
vistgt[8][j]=tgt[16][j];

n=§;
}

goto END;

}

114

if (ys > ymax)

{

/* Sensor is right and above target, all right and upper faces seen */

}

for (j=1; j<=4; j++)

{

vistgt[1][j]=tgt[8][j];
vistgt[2][j]=tgt[9][j];
vistgt[3][j}=tgt[10][j];
vistgt[4][]=tgt[5][j];
vistgt[S][j]=tgt[6][];
vistgt[6][j]=tgt[7][];
vistgt[7][j]=tgt[16][j];
vistgt[8][j]=tgt[15][j];

n=§;

}

goto END;

}

/3% % e 3 ok sk ok ok ok ke ke ok 3k sk ok ok sk 3k 3k 3 ok ok ok ok ok ok ok sk ok ok ok nintxo *******************************/

/* This function round up or down to the nearest integer for ix */

nintx()

{

ix=floor(x);
zx=fabs(x-ix);

if (zx >= .5)

{

ix=ceil(x);

115

else
{
ix=floor(x);
}

return;

}

ek sk ok ok ok ok sk ok ok o sk sk ok ok ok ok ok sk ok ok ok o ok ok ok ok ok ninty() *******************************/

/* This function round up or down to the nearest integer for iy */

ninty()
{

iy=floor(y);
zy=fabs(y-iy);

if (zy >= .5)
{
iy=ceil(y);
}
{

else

iy=floor(y);
) .

return;
}

[/ 3K ok o ok ok ok ok ok o ok ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok compare() *****************************/

/* This function compares LOS data to terrain data to see if LOS is obstructed */
compare()

{

116

/* Compares LOS height to ground height */
if (z < zdirt)
{
nolos=1;
}
else if (z < ztree)

{

/* The following determine attenuation due to vegetation. If feature is 200 m away
then appears as solid object, distance arbitrarily selected. Checks UCI if object has
height but no UCI assume to be trunk of object/man made structure, LOS blocked */

if (uci[ix*50+y] = 0)
{

nolos=2;
}
else if (z > uci[ix*50+iy])

{

/* Checks nature bit, structures block LOS. Manmade objects have a nature bit of 0 */
if (nat[ix*50+iy] == 0)

{

nolos=3; -

}

/* If program passes test above then obstruction is vegetation and any other parts of
tree will be assumed as foliage. Current assumption is foliage of 1 meter thickness
has an attenuation of 30%. This value is modified as a function of distance until the
modified value reaches an attenuation of 100% at terminal distance, 200 meters. At
200 meters all objects appear solid. It is assumed the modification factor is linear */

if (dist > 200)

{

nolos=4;

}
{
attenf=denfol*(1+2.33*dist/200);
}
}

/* Allows for sensor hiding behind or in foliage to see through w/out attenuation */
if (dist <= 1)

else

{
attenf=0;

}

/* Sums attenuations */
atten=atten+attenf;

/* If total attenuation exceeds 95%, LOS is blocked */
if (atten > .95)

{
nolos=5;
}
}

return;
}

[k sk ok o ok sk ok ok ok sk ok o ok ok s ok ok o ok ok o ok ok ok ok datatgt() ******************************/

/* This function displays to screen: range, % of target faces visible, and total area of
target faces visible */

118

datatgt()

{
prent=floor((r / n)*100);
printf("\n%d\t%d\t%3.2f\t%d\t%3.2f\n" cxt,cyt,range,prent,totarea);
return;

}

/******************************* tree() *******************************/

/* This function creates trees & places them on the terrain from info in "tree.dat" */
static void tree()

{

/* Declare variables */
int row;
float rad,x,z;

/* Opens file "tree.dat" and reads dimensional data */
fpl=fopen("tree.dat","r");

for (row=0; row<7; row++)

{
fscanf(fpl," %f %f %f\n",&mdata[row][0],&mdata[row][1],&mdata[row][2]);

/* Defines variables rad, x, z */
rad=mdata[row][0];x=mdata[row][1];z=mdata[row][2];

/* Defines cube as a new sphere and cyl as a new cylinder, attach’s them together */
factors[X]=factors[Z]=.75;factors[Y]=1.2;
sphere = WTobject_newsphere(rad,5,5,1,1,1);
WTobject_stretch(sphere,factors,p, WTFRAME WORLD);
cyl = WTobject_newcylinder(rad/1.25,rad/5,4,1,1,1);
dp4[X]=0;dp4{Y]=-(.95*rad);dp4[Z]=0;
WrTobject_translate(sphere,dp4, WTFRAME_ WORLD);
WTobject_attach(sphere,cyl);
WTobject_add(sphere);
dp5[X]=x;dp5[Y]=-rad/4;dp5[Z]=z;
WTobject_translate(sphere,dp5S, WTFRAME WORLD);

}

fclose(fpl);
return;

120

APPENDIX J. FLOWCHART PROG3.C

START

Header
Operations

CALL
Function k- TERRAIN()
TERRAIN

CALL
Function -
MY_ACTIONS

MY_ACTIONS()

CALL
Function - TGTPOSN()
TGTPOSN
CALL
RETURN Function o LOS()
LOS
CALL CALL
Function Function
DATATGT ASPECT
CALL
Function
RETURN NINTX or
NINTY
CALL
Function
COMPARE

RETURN

122

APPENDIX K. PROGRAM PROG3.C
/* PROGRAM PROG3.C */

/**/
/* This program calculates Line Of Sight (LOS) data and visualizes a target moving*/
/* through a 35x50 grid using a database of Pegasus numbers and is designed to ~ */
/* incorporate attenuation by vegetation. The main section of this program calls */
/* function terrain() which is used to start WorldToolKit and create a universe */
/* where there is a flat terrain with trees and a building located on it. The trees and*/
/* building are represented as the LOS algorithm would see them. The simulation */
/* has the target moving along a path behind the trees and building. Function * /
/* terrain() calls function los() which is used to calculate target data. */
/**/
/* Standard C and WorldToolKit header files */

#include <stdio.h>

#include <math.h>

#include"wt.h"

#include"wt.p"

/* Defines a pointer spaceball to structure type WTsensor */
static WTsensor *spaceball=NULL;

/* Defines windows, viewpoints, nodes, and paths */
static WTwindow *winl, *win2, *win3;
static WTviewpoint *view, *objviewl, *objview2, *objview3;

/* Defines objects */

WTobject *bldg, *copy, *cyl, *original, *sensor, *sphere, *cube, *terrobj;
WTobject *nodeobj, *tree3ml, *tree3m2, *tree3m3, *tree3m4, *tree3m5;
WTobject *tree8mlc, *tree8mlol, *tree8mlo2, *tree8mlo3, *tree8mlod;
WTobject *tree8m2c, *tree8m201, *tree8m202, *tree8m203, *tree8m?204;
WTobject *tree, *target;

/* Defines path */
- static WTpath *tnkpth;

/* Defines pointers to WTp3, WTq,and WTpq structures */

WTp3 at,dpl,dp2,dp3,dp4,dp5,dp6,dp7,dp8,dir,factors,p,p1,p2,pppl,ppp2.pp,pt;
WTp3 dp9,dp10,dp11,dp12,dp13,dp14,dpl5,dpl16,dpl17,dp18,dp19,dp20;

WTp3 atl, dirl;

- WTq ppl,pp2;

WTpq modelview;

/* Defines light object to be a pointer to type WTlight */
WTlight *mylight;

/* Initialize arrays and declares variables */

int ans,c,cxt,cyt,ho,ht,i,ix,iy,istan,istop,j,n,mnbr,nolos,prcnt;

int win,Wdow,xs,xt,xmax,xmin,xstart,ys,yt,ymax,ymin,ystart,zs,zt,zdirt,ztree;
int binelev[1750],binnat[175 0],binuci[1750],binvghindex[1 750],binvid[1750];
int elev[1750],nat[1750],realvgh[1 0],tgt[17][5],tile[1750];

int uci[1750],vgh[1750],vid[1 750],vghindex[1750],vistgt[9][9];

float aproj,atten,attenf,dx,dy,dz,denfol,dist,r,rad,rdx,rdy,row,rdns,range;

float totarea,visaproj,x,y,y_rotate,z,zx,zy;

float mdata[7][3],tc;

/* Standard C file pointers */
FILE *fp;
FILE *fpl;

main()

{

/* Reads database information into array from data file "btlfld_terr.dat" */
fp=fopen("btlfld_terr.dat","r");
for (i=0; i<=1749; i++)

{
fscanf(fp," %d", &tile[i]);

}
fclose(fp);

/* Assigns 1 meter of foliage an attenuation of 30% of the LOS */
denfol=0.3;

/* The vegetation height from pegasus has values of 0-15, each of these values
represents a particular height or range of heights. The following is used to correlate
the vgh value to a meaningful height */

realvgh[0]=0;
realvgh[1]=0;
. realvgh[2]=1;
realvgh[3]=2;
realvgh[4]=3;

124

realvgh[5]=4;
realvgh[6]=5;
realvgh[7]=8;
realvgh[8]=10;
realvgh[9]=15;
realvgh[10]=20;
realvgh[11]=25;
realvgh[12]=30;
realvgh[13]=35;
realvgh[14]=40;
realvgh{15}=47,

/* Once the database for the grid desired has been read into an array, the components
of information are extracted from the 32 bit number using the AND and SHIFT
functions. The groups of information of use in the program are placed in their own
arrays for rapid recall during calculations as follows:

elevation of highest point in grid - ELEV
under cover index - UCI
converted vegetation height - VGH
vegetation ID - VID
nature bit - NAT */
for (i=0; i<=1749; i++)
{

binuci[i]=tile[i] & 786432;
binvghindex[i}=tile[i] & 15360;
binvid[i]=tile[i] & 768;
binnat[i]=tile[i] & 128;
binelev[i]=tile[i] & 4292870144;

ucifi] = binuci[i] >> 18;
vghindex[i] = binvghindex[i] >> 10;
vgh[i]=realvgh[vghindex[i]];

vid[i] = binvid[i] >> 8;

nat[i] = binnat[i] >> 7;

elev[i] = binelev[i] >> 21;

}

/* This program is currently written to run in a stand alone mode. Sensor information
has a default value, but can be changed by answering prompts from the keyboard
Prompts to accept default values or input sensor location and height */
printf("\nThe Default Sensor Coordinates are xs = 0, zs = 0");

125

printf("\nand hs = 1\n");
printf("\nDo you wish to Change these values? 1=Yes, 2=No\n");
scanf(" %d",&ans);

if (ans == 1)
{

BEGIN:
printf("\nEnter Sensor X Coordinate (X,Y)\n");
scanf("%d,%d",&xs,&ys);
printf("\nEnter Sensor Height\n");
scanf("%d",&ho);
printf("\nAre You Sure? 1=Yes 2=No \n");
scanf(" %d", &ans);
if (ans = 2)
{
goto BEGIN;
}
}

{

else

xs=0;
ys=0;
ho=1;

}

printf("\nPress Spaceball Button 1 to add a window\n");
printf("\nPress Spaceball Button 2 to delete window added\n");
printf("\nPress Spaceball Button 3 to start target motion\n");
printf("\nPress Spaceball Button 4 to replay simulation\n");
printf("\nPress Spaceball Button 8 to end simulation\n");

/* Calls function terrain() */
terrain();

return;

126

}

[AR ok ok sk o ok ok s ok ok sk sk ok s o ok ks ok sk ok o ok ok o terrain() ** H**rkk ko dokkok ok koo K /

/* This function is WorldToolKit */
terrain()

{

void my_actions();

/* Creates new universe */
WTuniverse_new(WTDISPLAY_DEFAULT,WTWINDOW_DEFAULT);

/* Creates the object terrobj */
terrobj=WTterrain_flat(0.0,35,50,0,0,1.0,1.0,0x0£0,0x0¢0,1.0);

/* Defines pose of lights, and create light object*/
at[0]=0.0;at[1]=-25.0;at[2]=25.0;
dir[0]=.5;dir[1]=.5;dir[2]=.5;
mylight=WTlight new(at,dir,1.0);
at1[{0]=35.0;at1[1]=-25.0;at1[2]=25.0;
dir1[0]=-.5;dir1[1]=.5;dir1[2]=-.5;
mylight=WTlight_new(at1,dir1,1.0);

/* Creates the object spaceball or mouse */
spaceball=WTspaceball_new(COM1);

/* Creates small building, sensor, and target, and places them on the terrain */
bldg=WTobject_newblock(3,-8,3,1,1);
dp1{X]=29;dp1[Y]=-4;dp1][Z]=29;

WTobject_translate(bldg,dpl, WTFRAME_WORLD);
WTobject_changecolor(bldg,0xfff,0x777);

sensor=WTobject_newblock(.5,.5,.5,1,1);
dp2[X]}=0.0;dp2[Y]=-.250;dp2[Z]=0.0;
WTobject_setposition(sensor,dp2);
WTobject_changecolor(sensor,0xfff,0xf0f);

/* Target is loaded from external Autodesk dxf file */
cube=WTobject_new("cubetgt.dxf",&modelview,1.0,FALSE,FALSE);
dp3[X]}=15.0;dp3[Y]=5.0;dp3{Z]}=25.0;
WTobject_setposition(cube,dp3);
WTobject_changecolor(cube,0x000,0xffY);

127

/* Target path is loaded from external file */
nodeobj=WTobject_newblock(.1,.1,.1,1, D);
tnkpth=WTpath_load("cube.pth",nodeobj);

/* Creates trees */
tc = 0x777;
tree3m1=WTobject_newblock(1,3,1,1,1);
dp4[X]=17.0;dp4[Y]=-1.5;dp4[Z]}=27.0;
WTobject_setposition(tree3m1,dp4);
WTobject_changecolor(tree3m1,0xfff, tc);
tree3m2=WTobject_newblock(1,3,1,1,1);
dp5[X]=17.0;dp5[Y]=-1.5;dp5[Z]=33.0;
WTobject_setposition(tree3m2,dp5);
WTobject_changecolor(tree3m2,0xfff,tc);
tree3m3=WTobject_newblock(1,3,1,1,1);
dp6[X]=19.0;dp6[Y]=-1.5;dp6[Z]=31.0;
WTobject_setposition(tree3m3,dp6);
WTobj ect_changecolor(tree3m3,0xfff,tc);
tree3m4=WTobject_newblock(1,3,1,1,1);
dp7[X]=18.0;dp7[Y]=-1.5;dp7[Z]=34.0;
WTobject_setposition(tree3m4,dp7);
WTobject_changecolor(tree3m4,0xfff, tc);
tree3m5=WTobject_newblock(1,3,1,1,1);
dp8[X]=22.0;dp8[Y]=-1.5;dp8[Z]}=33.0;
WTobject_setposition(tree3m5,dp8);
WTobject_changecolor(tree3m5,0xfff,tc); '
tree8m1c=WTobject_newblock(1,8,1,1,1);
dp9[X]=12.0;dp9[Y]=-4.0;dp9[Z]}=36.0;
WTobject_setposition(tree8m1c,dp9);
WTobject_changecolor(tree8m1c,0xfft,tc);
tree8m1o1=WTobj ect_newblock(1,4,1,1,1);
dp10[X]=12.0;dp10[Y]=-3.0;dp10[Z]=35.0;
WTobject_setposition(tree8m1o1,dp10);
WTobject_changecolor(tree8m1o1,0xfff,tc);
tree8m102=WTobj ect_newblock(1,4,1,1,1);
dp11[X]=13.0;dp11[Y]=-3.0;dp11[Z]}=36.0;
WTobject_setposition(tree8m102,dp11);
WTobject_changecolor(tree8m102,0xfff,tc);
tree8m1o3=WTobject_newblock(1,4,1,1,1);
dp12[X]=12.0;,dp12[Y]=-3.0;dp12[Z]=37.0;
WTobject_setposition(tree8m103,dp12);
WTobject_changecolor(tree8m103,0xfff tc):
tree8mlo4=WTobject_newblock(1,4,1,1,1);
dp13[X]}=11.0;,dp13[Y]=-3.0;dp13[Z]}=36.0;

128

WTobject_setposition(tree8m104,dp13);
WTobject_changecolor(tree8m104,0xffT, tc);
tree8m2c=WTobject_newblock(1,8,1,1,1);
dp14[X]=26.0;dp14[Y]=-4.0;dp14[Z]=35.0;
WTobject_setposition(tree8m2c¢,dp14);
WTobject_changecolor(tree8m2c,0xfff, tc);
tree8m201=WTobject_newblock(1,4,1,1,1);
dp15[X]=26.0;dp15[Y]=-3.0;dp15[Z]=34.0;
WTobject_setposition(tree8m201,dp15);
WTobject_changecolor(tree8m201,0xfff, tc);
tree8m202=WTobject_newblock(1,4,1,1,1);
dp16[X]=27.0;dp16[Y]=-3.0;dp16[Z]=35.0;
WTobject_setposition(tree8m202,dp16);
WTobject_changecolor(tree8m202,0xfff,tc);
tree8m203=WTobject_newblock(1,4,1,1,1);
dp17[X]=26.0;dp17[Y]=-3.0;dp17[Z])=36.0;
WTobject_setposition(tree8m203,dp17);
WTobject_changecolor(tree8m203,0xffT,tc);
tree8m204=WTobject_newblock(1,4,1,1,1);
dp18[X]=25.0;dp18[Y]=-3.0;dp18[Z]=35.0;
WTobject_setposition(tree8m204,dp18);
WTobject_changecolor(tree8m204,0xfff tc);

/* Prints to screen title headings */
printf("\nxt\tyt\trange\tprent\ttotarea");
printf("\n__ \t_ \t \t \t \n");

/* Sets universe action function to my_actions() */
WTuniverse_setactions(my_actions);

/* Prepares for simulation to start */
WTuniverse_ready();

/* Scales spaceball or mouse sensitivity to the size of the universe */
WTsensor_setsensitivity(spaceball, 5.0 *WTuniverse_getradius());

/* Connects the viewpoint to the spaceball or mouse */
WTviewpoint_addsensor(view,spaceball);

/* Puts some lights on in the universe */
WTlight_setambient(0.4);

129

/* Enters main simulation loop and starts simulation */
WTuniverse go();

/* Deletes universe, simulation loop must be exited to reach this statement */
WTuniverse_delete();

return;

}

SRRk ok ok ko ok ok o ok ok ok ok ok ok o ok MY _actions() ****¥xkkkk ko dok bk kd ok dkk ok Kk /

/* This function determines what actions will occur in the universe */
void my_actions()

{

/* Sets default universe viewpoint */
view=WTuniverse_getviewpoint();
p1[X]=xs;p1[Y]=-ho;p1[Z]=ys;
pp1[X]}=0.0;pp1[Y]=0.0;pp1[Z]=0.0;pp1[W]=1.0;
ppp1[X]=1.0;ppp1[Y]=0.0;ppp1[Z]=1.3;
WTviewpoint_setposition(view,p1);
WTviewpoint_setorientation(view,pp1);
WTviewpoint_setdirection(view,ppp1);

/* Pressing spaceball button ONE adds an additional window */
if(WTsensor _getmiscdata(spaceball)&WTSPACEBALL__BUTTON1)

{

win2=WTwindow__new(505,500,250,400,WTWINDOW_DEFAULT);
objview2=WTviewpoint_new();

p2[X]=17.5;p2[Y]=-25.0;p2[Z]=25.0;
pp2[X]}=0.0;pp2[Y]=0.0;pp2[Z]=0.0;pp2[W]=1.0;
ppp2[X]=0.0;ppp2[Y]=1.0;ppp2[Z]=0.0; -
WTviewpoint_setposition(objview2,p2);
WTviewpoint_setorientation(objview2,pp2);
WTviewpoint_setdirection(objview2,ppp2);
WTwindow_setviewpoint(win2,0bjview2);

}

/* Pressing spaceball button TWO deletes the first window added */
if(WTsensor _getmiscdata(spacebal)& WTSPACEBALL_BUTTON?)

130

{
WTwindow_delete(win2);

}

/* Pressing spaceball button THREE starts the target motion */
if(WTsensor_getmiscdata(spaceball)& WTSPACEBALL BUTTONS3)

{

WTpath_setobject(tnkpth,cube);
WTpath_play(tnkpth);
WTpath_record(tnkpth);

}

/* Pressing spaceball button FOUR restarts the target motion */
if(WTsensor_getmiscdata(spacebal)& WTSPACEBALL_BUTTON4)

{

WTpath_stop(tnkpth);
WTpath_rewind(tnkpth);
WTpath_play(tnkpth);

}

/* Based on target position, function tgtposn() called */
WTobject_getposition(cube,pp);

if (pp[X] = 2)
{

tgtposn();

}

if (pp[X] = 7)
{

tgtposn();

131

}

if (pp[X] = 12)
{

tgtposn();

}

if (pp[X] = 17)
{

tgtposn();

}

if (pp[X] = 22)
{

tgtposn();

}

if (pp[X] = 26)
{

tgtposn();

}

if (pp[X] = 30)
{

tgtposn();

}

if (pp[X] == 33) && (pp[Z] = 37))

132

{

tgtposn();

}

if ((pp[X] == 33) && (pplZ] = 32))
{

tgtposn();

}

if ((pp[X] = 33) && (pp[Z] = 27))
{

tgtposn();

}

if ((pp[X] == 33) && (pp[Z] = 22))
{

tgtposn();

}

/* Pressing spaceball button EIGHT terminates simulation */
if(WTsensor_getmiscdata(spacebal)& WTSPACEBALL BUTTONS)

{

WTuniverse_stop();

}

/*****************************tgﬁposn()******************************/

/* This function calls los() and datatgt(), receives value of xt and zt from
WTobject_getposition, and displays target data to screen */

tgtposn()
{
xt=pp[X];yt=pp[Z];
/* Calls function los() to determine LOS to target faces, and other calculations */
los();
/* Calls function datatgt() to display target data */
datatgt();
/* Zeros out total area and percent data */
totarea=0;
prent=0.0;
return;

}

[/ e ok ke s s ok s sk ok sk ok ok o sk o ok sk ok ok ok ok ok ok ok o ok ok ok ok los() ********************************/

/* This function calculates LOS data */

los()

{

/* Begins loop inputting targets moving locations */
cxt=xt;
cyt=yt;

range=sqrt((ﬂoat)pow((xt-xs),2)+(ﬂoat)pow((yt-ys),2));

/* Calls the function aspect() to determine how much of the target is presented for
possible LOS. Vistgt[][] is the array returned holding the grid location and
information on the faces of the target which may be seen, n = the number of
possible detections and is used for looping the algorithm */

aspect();

/* Loops to check possible LOS for all surfaces presented by target */
r=0;

for (=1; j<=n; j++)

134

{

/* Zeros atten for each run and gets target grid height data for stepping LOS */
atten=0;
attenf=0;
xt=vistgt[j][1];
yt=vistgt[j][2];
ht=vistgt[j][3];

/* Calculates target and observer heights. First ground height must be found by
subtracting vegetation height from absolute height. Then sensor and target heights
above ground are added to obtain absolute elevations of sensor and target */

zs=elev[xs*50+ys]-vgh[xs*50+ys];
zt=elev[xt*50+yt]-vgh[xt*50+yt];
zs=zs+ho;

zt=zt+ht;

/* Determines difference btwn x & y coordinates, and convert from integer to real */
rdx=(xt-xs);
rdy=(yt-ys);

/* If rdy > rdx, skip to stepping in y direction, else proceed stepping in x direction */
if (rdy >= rdx)

{
goto YSTEP;
}
{

else

y=Ys;
dy=(yt-ys)/rdx;
zZ=7s;
dz=(zt-zs)/rdx;

/* This if-else statement ensures moving from sensor to target. Move only from
sensor because dist from sensor will affect attenuation level of any obstructions */

if (xt > xs)

{

135

/* Apply slope to each step to determine grid passing thru and LOS height in that grid,
compare height to ground height, no LOS will exist if ground height > LOS height:
z = height of LOS

zZtree = height of vegetation
zdirt = height of the ground */
istart=xs+1;
istop=xt;
ystart=y;

for (ix=istart; ix<=istop; ix++)
{

y=y+dy;

z=z+dz;

ninty();
ztree=elev[ix*50+iy];
zdirt=ztree-vgh[ix*50+iy];

/* Calculate dist from sensor to grid where LOS currently in heading toward target */
dist=sqrt((ﬂoat)pow((istart-ix),2)+(ﬂoat)pow((ystart-iy),2));

/* Calls function compare() */
compare();

if (nolos != 0)
{
goto FINISH;
}
}
goto CONTINUE;
}
{

istart=xs-1;
istop=xt;

ystart=y;

else

136

for (ix=istart; ix<=istop; ix--)
{
y=y+dy;

z=z+dz;

ninty();

ztree=elev[ix*50+iy];

zdirt=ztree-vgh[ix*50-+iy];
dist=sqrt((float)pow((istart-ix),2)+(float)pow((ystart-iy),2));

/* Calls function compare() */
compare();

if (nolos != 0)
{
goto FINISH;
}
}
goto CONTINUE;
}
}

/* This section is used if stepping in y direction and same as stepping in x direction */
YSTEP:

X=XS;

dx=(xt-xs)/rdy;

Z=1Zs;

dz=(zt-zs)/rdy;
if (yt > ys)

{

istart=ys+1;
istop=yt;

137

Xstart=x;

for (iy=istart; iy<=istop; iy++)

{

x=x+dx;

z=z+dz;

nintx();

ztree=elev[ix*50+iy];

zdirt=ztree-vgh[ix*50+iy];
dist=sqrt((ﬂoat)pow((xstart-ix),2)+(ﬂoat)pow((istart-iy),2));

/* Calls function compare() */
compare();

if (nolos != 0)
{
goto FINISH;
}
}
goto CONTINUE;
}
{
istart=ys-1;

istop=yt;
xstart=x;

else

for (iy=istart; iy<=istop; iy--)
{

x=x+dx;

z=z+dz;

nintx();
ztree=elev[ix*S50+iy];

138

zdirt=ztree-vgh[ix*50+iy];
dist=sqrt((float)pow((xstart-ix),2)+(float)pow((istart-iy),2));

/* Calls function compare() */
compare();

if (nolos != 0)
{
goto FINISH;
}
}
goto CONTINUE;
}
CONTINUE:
/* At this point LOS has atten = 0 or a number. Apply this attenuation factor to proj
area of target to reduce area of visibility. Proj area is determined based on surface

direction of face in question. This value is 1 for a vertical surface and 2 for a
horizontal surface. This value is stored in vistgt[][] array which describes target */

if (vistgt[j][4] = 0)

{
aproj=rdy/sqrt(pow(rdy,2)+pow(rdx,2));
}
else
{
| aproj=rdx/sqrt(pow(rdy,2)+pow(rdx,2));
}
/* Sees if there is any attenuation to be applied, if so apply it */
if (atten = 0)

{

visaproj=aproj;
}
{

visaproj=(1 -atten)*aproj;

}

else

/* Sums total visible area presented by target */
totarea=totarea+visaproj;

/* Zeros aproj and visaproj for next LOS */
aproj=0;
visaproj=0;
r=r+l;

FINISH:
nolos=0;

}

return;
}

/****************************** aspecto ******************************/

/* This subroutine assigns target grid locations based on central input location. It then
uses sensor and target locations to determine which faces of target are ideally visible
to sensor. Faces which are visible have there information stored in array vistgt[][]
for return to main program. The number of faces ideally visible are also returned.
Assign target data to array tgt[][] based on center grid of target 3x3 each exterior
vertical face of target is represented */

aspect()

{

tgt[1][1]=xt-1;
tgt[1][2]=yt-2;
tgt[1][4]=0;
tgt[2][1]=xt-2;
tet[2][2]=yt-1;
tgt[2][4]=1;

140

_2’
tgt[3][1]ixt;
i3

3 2
t§E4][1]=Xt+l;
Er e
el l]=xt-1;.

a +2;
g%ﬂ%:&ﬁ
tgt[5] e |

6][1 >
:%{6][2]3’?
S

7 i
gb][ﬂ:g;
tgt[?}%ﬂ:xﬂ%

8 b
IZESJ[Z]:?“
tgt[S][4]_ o

[9][1]”X;
:§[9][2]3'§ |
S
tgtHOJ[Z]jf- ;
st

1 o
tgtﬁluzlzg
sl

2 9
tgtH2][2]:g§
i

; -1,
tgtH3][2]:%’§
S
T
:5[14]%13:“;)
s,
st

; .
tgtHﬂD]j’f
tgt[16][4]—
tgt

/* Assigns target heights, in tgt[][] */
for (j=1; j<=12; j++)

{
tgtf][3]=1;
}
for (j=13; j<=16; j++)
{
tet[jl[3]=2;
}

/* Establishes bounds of the target */
Xmax=xt+1;
xmin=xt-1;
ymax=yt+1;
ymin=yt-1;

/* Determines visible sectors of target */
if ((xs <= xmax) && (xs >= xmin))

{

if (ys > ymax)

{

/* Sensor is directly above target grids, upper faces */
for (=1; j<=4; j++)

{

vistgt[1][j]=tgt[5][j];
vistgt[2][j]=tgt[6][j];
vistgt[3][j]1=tgt[7]1[j];
vistgt[4][j]=tgt[15][j];
n=4;

142

/* Allows for skewed view of a top block side */
if (xs < xt)

{
vistgt[5][j]=tgt[14][j];

n=5;
}

if (xs > xt)
{
vistgt[5][j]=tgt[16][j];

n=5;
}
}

goto END;

}
{

/* If the sensor is vertically in line with target grids and it is not above target it must
be below it, therefore it sees lower faces */
for (=1; j<=4; j++)

{

vistgt[1][j]=tgt[1][j];
vistgt[2][j]=tgt[12][j];
vistgt[3][j]1=tgt[11][];
vistgt[4][j]=tgt[13][j];
n=4;

else

/* Allows for skewed view of a top block side */
if (xs < xt)

{

143

vistgt[5][j]=tgt[14][j];

n=5;
}
if (xs > xt)
{
vistgt[S][j]=tgt[16](j];

n=35;
}
}

goto END;
}
}

if (xs < xmin)
{

if ((ys >= ymin) && (ys <= ymax))
{

/* Sensor is horizontally aligned with target grids and to left of target, therefore it sees
left side faces */

for (j=1; j<=4; j++)
{ .
vistgt[1][j]=tgt[2]j);
v}stgt[2][!]=tgt[3][!];
v;stgt[3][]]=t81[4][l].;
vistgt[4][j]=tgt[14][j];
n=4;

* Allows for skewed view of top block side */
if (ys < yt)

144

{
vistgt[5][1=tgt[13][j];

n=5;
}
if (ys > yt)
{
vistgt[5][j]=tgt[15][j];

n=35;
}
}

goto END;

}
if (ys < ymin)

{

/* Sensor is to left and below target, all of left side and lower faces seen */
for (=1; j<=4; j++)

{

vistgt[1][j]=tet[1][j];
vistgt[2][j]=tgt[2][j];
vistgt[3][j]=tgt[3][j];
vistgt[4][j]=tet[4][];
vistgt[51[i1=tet[12][;]);
vistgt[6][j]=tgt[11][j];
vistgt[7][j]=tgt[13][j];
vistgt[8][j]=tgt[14][;];

n=8;
}
goto END;

145

}

if (ys > ymax)

{

/* Sensor is to left side and above target, all of left side and upper faces seen */
for (j=1; j<=4; j++)

{

vistgt[1][j]=tgt[2][j];
vistgt[2][j]=tgt[3][j];
vistgt[3][j]=tgt[4][j];
vistgt[4][j]=tgt[5][j);
vistgt[S][j1=tgt[51[];
vistgt[6][j]=tgt[7][j];
vistgt[7][j]=tgt[14]j];
vistgt[8](j]=tgt[15][j];

n=8§;

}
goto END;

}
}

/* Sensor is right of target */
if ((ys >= ymin) && (ys <= ymax))

{

/* Sensor horizontally aligned w/target and right of target, therefore right faces seen */
for (j=1; j<=4; j++)

{

vistgt[1][j]=tgt[8][j];
vistgt[2][j]=tgt[91[j];
vistgt[3][j]=tgt[10][j];
Vi_slttgt[4][j]=tgt[1 6]101;
n=4;

146

/* Allows a skewed view of a top side */
if (ys < yt)

{
vistgt[S][j1=tgt[13][j];

n=5;
}

if (ys > yt)
{
vistgt[5][j]=tgt[15][j];

n=5;
}
}

goto END;

}
if (ys < ymin)

{

/* Sensor is right of and below target, all right and lower faces seen */
for (=1; j<=4; j++)

{

vistgt[11[]=tgt[8][j];
vistgt[2][j]=tgt[9][];
vistgt[3][j]=tgt[10][j];
vistgt[4][j]=tgt[1][j];
vistgt[5][j]=tgt[12][j];
vistgt[6][j]=tgt[11][j];
vistgt[7][j]=tgt[13][j];
vistgt[8][j]=tgt[16][j];

n=8;

147

}
goto END;

}

if (ys > ymax)

{

/* Sensor is right and above target, all right and upper faces seen */
for (=1; j<=4; j++)

{

vistgt[1][j]=tgt[8][j];
vistgt[2][j]=tgt[91[j];
vistgt[3][j]=tgt[10][j];
vistgt[4][j1=tgt[5]]j];
vistgt[S][j1=tgt[6][j];
vistgt[6][]1=tgt[71[j];
vistgt[7]{j]=tgt[16][j];
vistgt[8][j]=tgt[15][j];

n=8§;

}
goto END;

END:

return;
}

/******************************* nintx() *******************************/

/* This function round up or down to the nearest integer for ix */
nintx()

{

ix=floor(x);
zx=fabs(x-ix);

148

if (zx >= .5)

ix=ceil(x);
}
{

ix=floor(x);

}

else

return;
}

/******************************* ninty() *******************************/
/* This function round up or down to the nearest integer for iy */

ninty()
{

1y=floor(y);
zy=fabs(y-iy);

if (zy >=.5)
{
iy=ceil(y);
}

{
iy=floor(y);

else

}

return;

149

/2% 2 sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok o ok ok compare() *****************************/

/* This function compares LOS data to terrain data to see if LOS is obstructed */
compare()

{

/* Compares LOS height to ground height */
if (z < zdirt)

{
nolos=1;

}

else if (z < ztree)

{

/* The following determine attenuation due to vegetation. If feature is 200 m away
then appears as solid object, distance arbitrarily selected. Checks UCI, if object has
height but no UCI assume to be trunk of object/manmade structure, LOS blocked */

if (uci[ix*50+iy] = 0)

{
nolos=2;
}
else if (z > uci[ix*50+iy])

{

/* Checks nature bit, structures block LOS. Manmade objects have a nature bit of 0 */
if (nat[ix*50+iy] = 0)

{

nolos=3;

}

150

/* If program passes above test then obstruction is vegetation and any other parts of
tree will be assumed as foliage. Current assumption is foliage of 1 meter thickness
has an attenuation of 30%. This value is modified as a function of distance unti] the
modified value reaches an attenuation of 100% at terminal distance, 200 meters. At
200 meters all objects appear solid. It is assumed the modification factor is linear */

if (dist > 200)

{
nolos=4;
}

{
attenf=denfol*(1+2.33*dist/200);

else

}
}

/* Allows for sensor hiding behind or in foliage to see through w/out attenuation */
if (dist <= 1)

{
attenf=0;

}

/* Sums attenuations */
atten=atten+attenf;

/* If total attenuation exceeds 95%, LOS is blocked */
if (atten > .95)

{

nolos=5;

return;

}

[RA AR Aok ok ok ko ok o ok ok ok ok ok ok datatgt() **+*FEekrsrbhm ko kb kdk ok dokdokkk

/* This function displays to screen: range, % of target faces visible, and total area of
target faces visible */
datatgt()

{

prent=floor((r / n)*100);
printf("\n%d\t%d\t%3.2\t%d\t%3 .2f\n",cxt,cyt,range,prent,totarea);

return;

152

10.

11.

LIST OF REFERENCES

TITAN Tactical Applications, Software Design Manual Janus (A) 2.1 Model,
Contract No. DABT 60-90-D-0002, Delivery Order #37.

Dau, Frederick W., Improving Detection and Acquisition in Janus (A) using
Pegasus Database, Masters Thesis, Department of Mechanical Engineering, Naval
Postgraduate School, Monterey, California, March 1994.

TITAN Tactical Applications, Software Programmers Manual Janus (4) 2.1
Model, Contract No. DABT 60-90-D-0002, Delivery Order #37.

U.S. Army TRADOC Analysis Command, Model Documentation Janus (4) Basic
User’s Tutorial, Monterey, California.

TITAN Tactical Applications, User Manual Janus 3.0 Model, Contract No. DABT
60-90-D-0002, Delivery Order #37.

Baer, W., and Akin, J.R., "An Approach for Real-time Database Creation from
Aerial Imagery", Nascent Systems Development Inc., Carmel Valley, California.

Perry, Greg, C by Example, Que Corporation, Carmel, Indiana, 1993.

Purdum, Jack, Guide to C Programming, Ziff-Davis Press, Emeryville, California,
1992.

Sense8 Corporation, WorkdToolKit Version 2.0 Reference Manual, Sausalito,
California, 1993.

Young, John M., Synthetic Environments for C3 Operations, Masters Thesis,
Department of Mechanical Engineering, Naval Postgraduate School, Monterey,
California, September 1994.

U.S. Department of the Interior U.S. Geological Survey, Digital Elevation Models
Data Users Guide 5, Reston, Virginia, 1993.

154

INITIAL DISTRIBUTION LIST

No. Copies
Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5101

Department Chairman, Code ME 1
Department of Mechanical Engineering

Naval Postgraduate School

Monterey, California 93943-5000

Professor Morris R. Driels, Code ME/Dr 2
Department of Mechanical Engineering

Naval Postgraduate School

Monterey, California 93943-5000

Naval Engineering Curricular Officer, Code 34 1
Department of Mechanical Engineering

Naval Postgraduate School

Monterey, California 93943-5000

Director, TRAC-Monterey 2
P.O. Box 8692

Naval Postgraduate School
Monterey, California 93943-0692

Professor Wolfgang Baer, Code CS/Ba 1
Department of Computer Science

Naval Postgraduate School

Monterey, California 93943-5000

Adjunct Professor Judith Lind, Code OR/Li 1
Department of Operations Research

Naval Postgraduate School

Monterey, California 93943-5000

10.

11.

Adjunct Professor Bard Mansager, Code MA/Ma
Department of Mathematics

Naval Postgraduate School

Monterey, California 93943-5000

Associate Professor Paul Moose, Code CC

Command, Control & Communications (C3) Academic Group
Naval Postgraduate School

Monterey, California 93943-5000

Mark R. Whitney

3625 Elkton Drive
Chesapeake, Virginia 23321

156

